Problem O
Time Limit : 3000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other)
Total Submission(s) : 5 Accepted Submission(s) : 5
Problem Description
在一无限大的二维平面中,我们做如下假设:<br>1、 每次只能移动一格;<br>2、 不能向后走(假设你的目的地是“向上”,那么你可以向左走,可以向右走,也可以向上走,但是不可以向下走);<br>3、 走过的格子立即塌陷无法再走第二次;<br><br>求走n步不同的方案数(2种走法只要有一步不一样,即被认为是不同的方案)。<br>
Input
首先给出一个正整数C,表示有C组测试数据<br>接下来的C行,每行包含一个整数n (n<=20),表示要走n步。<br>
Output
请编程输出走n步的不同方案总数;<br>每组的输出占一行。<br>
Sample Input
212
Sample Output
37
===========================
找规律+递推,不难,挺好想的,在每一层的所有状态中,有的点有3个方向可以走,有的只有2个,所以我们的f[i]就是求这两部分方案数的和,然后就没什么好说的了。。。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int f[21];
int main()
{
f[1]=3;f[2]=7;
for(int i=3;i<=21;++i) //f[i]=f[i-2]*3+(f[i-1]-f[i-2])*2,找规律得来;
f[i]=f[i-2]+2*f[i-1];
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
cout<<f[n]<<endl;
}
return 0;
}
The end;