洛谷——T157532过河卒 动态规划入门题

8 篇文章 1 订阅
8 篇文章 1 订阅
该博客主要探讨了马踏棋盘问题的解决方法,通过设置障碍点并使用动态规划策略来计算马的走法数量。文章详细解释了如何初始化DP数组,并给出了防止数组越界的处理。最后,展示了AC代码实现,该代码计算了棋盘上特定区域马的行走路径总数。
摘要由CSDN通过智能技术生成

在这里插入图片描述
解析
根据题意:
1.根据给出马的位置,求出所有的障碍点,并在标志数组中将值设为1。
2.根据题意给出公式:dp[i][j]=dp[i-1][j]+dp[i][j-1];
3.根据标志数组,将公式转为程序
注意:
1.因为马的走向肯定有-2,所以此题要防止越界
2.因为数据量大,最好将dp数组定义为long long int

AC代码

#include <iostream>
using namespace std;
#define long long ll
const int ROW=40;
const int COL=40;
int isA[ROW][COL];
ll DP[ROW][COL];
int isR[9]={0,-1,-1,1,1,2,-2,2,-2};
int isC[9]={0,2,-2,2,-2,-1,-1,1,1};
int main(){
	int isRowEnd,isColEnd,isRowL,isColL;
	//定义接收用户输入的变量
	
	cin>>isRowEnd>>isColEnd>>isRowL>>isColL;
	//测试用例的输入
	
	isRowEnd+=2;
	isColEnd+=2;
	isRowL+=2;
	isColL+=2;
	//防止在求障碍点时越界
	
	for(int i=0;i<9;i++){
		isA[isRowL+isR[i]][isColL+isC[i]]=1;
	}
	//标记所有的障碍点为1
	
	DP[1][2]=1;
	//初始化
	
	for(int i=2;i<=isRowEnd;i++){
		for(int j=2;j<=isColEnd;j++){
			if(isA[i][j]==0){
				DP[i][j]=DP[i-1][j]+DP[i][j-1];
			}
		}
	}
	//公式转代码,求DP数组
	
	cout<<DP[isRowEnd][isColEnd]<<endl;
	//输出结果
	
	return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

五_谷_丰_登

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值