Triton部署Torch和Onnx模型,集成数据预处理

1. Triton Inference Server 简介

AI 推理入门必看 | Triton Inference Server 原理入门之框架篇

  • Server侧:同时支持TensorRT、ONNX、Pytorch、TensorFlow的模型托管和部署
  • Client侧:http、 rest、 grpc api
  • 支持CPU、GPU、Multi-GPU 异构特性
  • 动态分批推理 batch size是动态的,多线程,多实例
  • 模型并行推理 k8s管理不同的模型;一个模型可以供不同服务使用
  • 模型库 模型文件可以存储在云端(AWS s3,谷歌云存储等)或本地文件系统,即使某一模型在Triton上已经开始运行,Triton仍然可以加载从模型库更新的新模型或新配置,这也保障了更好的模型安全性能和模型升级机制。
  • 模型版本管理 一个模型文件夹下面可以放几个版本,triton可以自动化管理
  • 服务器监控 Prometheus

2. Triton安装

2.1. 预备

2.2. Pull triton镜像

  • 镜像库:https://catalog.ngc.nvidia.com/orgs/nvidia/containers/tritonserver/tags
    在这里插入图片描述
  • 选取镜像库中一个镜像下拉
终端输入:
docker pull nvcr.io/nvidia/tritonserver:22.05-py3
或者
sudo docker pull nvcr.io/nvidia/tritonserver:22.05-py3

安装成功会输出类似LOG:
7e9edccda8bc: Pull complete 
a77d121c6271: Pull complete 
074e6c40e814: Pull complete 
Digest: sha256:1ddc4632dda74e3307e0251d4d7b013a5a2567988865a9fd583008c0acac6ac7
Status: Downloaded newer image for nvcr.io/nvidia/tritonserver:22.05-py3
nvcr.io/nvidia/tritonserver:22.05-py3

3. Triton的简单测试使用

3.1 构建一个模型目录

mkdir -p /home/triton/model_repository/<your model name>/<vision>
简单测试先使用:
mkdir -p /home/triton/model_repository/fc_model_pt/1
mkdir -p /home/triton/model_repository/fc_model_onnx/1

/home/triton/model_repository 文件目录表示模型仓库,所有的模型都在这个模型目录中。
启动容器后会将model_repository映射到tritonserver的docker镜像中。

3.2 为模型库生成2个测试模型 (torch和onnx)

import torch
import torch.nn as nn

class SimpleModel(nn.Module):
    def __init__(self):
        super(SimpleModel, self).__init__()
        self.embedding = nn.Embedding(100, 8)
        self.fc = nn.Linear(8, 4)
        self.fc_list = nn.Sequential(*[nn.Linear(8, 8) for _ in range(4)])

    def forward(self, input_ids):
        word_emb = self.embedding(input_ids)
        output1 = self.fc(word_emb)
        output2 = self.fc_list(word_emb)
        return output1, output2

if __name__ == "__main__":
    pt_path = "/home/triton/model_repository/fc_model_pt/1/model.pt"
    onnx_path = "/home/triton/model_repository/fc_model_onnx/1/model.onnx"
    model = SimpleModel() 
    ipt = torch.tensor([[1, 2, 3], [4, 5, 6]], dtype=torch.long)
    script_model = torch.jit.trace(model, ipt, strict=True)
    torch.jit.save(script_model, model_path)
    torch.onnx.export(model, ipt, onnx_path, 
                      input_names=['input'],  
                      output_names=['output1', 'output2']
                      )

3.3 启动Triton服务

# 建议先重启一下Docker 非必需
sudo systemctl restart docker
# 启动Tritont服务
sudo docker run --gpus=1 --rm -p8000:8000 -p8001:8001 -p8002:8002  -v /home/triton/model_repository:/models nvcr.io/nvidia/tritonserver:22.05-py3 tritonserver --model-repository=/models --strict-model-config=false

注意:上面命令中 strict-model-config=false,这个表示使用Triton自动生成模型的配置
如果熟悉模型配置的规范,可以先自己配置好config文件。再启动Tritont服务,对应的strict-model-config传True。

这里我们为torch版本配置config参数
在"/home/triton/model_repository/fc_model_pt" 目录下新建 config.pbtxt 文件

name: "fc_model_pt" # 模型名,也是目录名
platform: "pytorch_libtorch" # 模型对应的平台,本次使用的是torch,不同格式的对应的平台可以在官方文档找到
max_batch_size : 64 # 一次送入模型的最大bsz,防止oom
input [
  {
    name: "input__0" # 输入名字,对于torch来说名字于代码的名字不需要对应,但必须是<name>__<index>的形式,注意是2个下划线,写错就报错
    data_type: TYPE_INT64 # 类型,torch.long对应的就是int64,不同语言的tensor类型与triton类型的对应关系可以在官方文档找到
    dims: [ -1 ]  # -1 代表是可变维度,虽然输入是二维的,但是默认第一个是bsz,所以只需要写后面的维度就行(无法理解的操作,如果是[-1,-1]调用模型就报错)
  }
]
output [
  {
    name: "output__0" # 命名规范同输入
    data_type: TYPE_FP32
    dims: [ -1, -1, 4 ]
  },
  {
    name: "output__1"
    data_type: TYPE_FP32
    dims: [ -1, -1, 8 ]
  }
]

运行成功可以看到日志:
在这里插入图片描述
在这里插入图片描述

3.4 修改triton配置

由于模型是自动配置的参数,用户不知道配置参数,也不能灵活的配置。
理想情况下我们应该为每个模型创建一个 config.pbtxt 文件。

使用命令获取模型生成的配置文件:

curl localhost:8000/v2/models/<your model name>/config 

#简单测试先使用:
curl localhost:8000/v2/models/fc_model_onnx/config 

得到输出

{
        "name": "fc_model_onnx",
        "platform": "onnxruntime_onnx",
        "backend": "onnxruntime",
        "version_policy": {
                "latest": {
                        "num_versions": 1
                }
        },
        "max_batch_size": 0,
        "input": [{
                "name": "input",
                "data_type": "TYPE_INT64",
                "format": "FORMAT_NONE",
                "dims": [2, 3],
                "is_shape_tensor": false,
                "allow_ragged_batch": false,
                "optional": false
        }],
        "output": [{
                "name": "output2",
                "data_type": "TYPE_FP32",
                "dims": [2, 3, 8],
                "label_filename": "",
                "is_shape_tensor": false
        }, {
                "name": "output1",
                "data_type": "TYPE_FP32",
                "dims": [2, 3, 4],
                "label_filename": "",
                "is_shape_tensor": false
        }],
        "batch_input": [],
        "batch_output": [],
        "optimization": {
                "priority": "PRIORITY_DEFAULT",
                "input_pinned_memory": {
                        "enable": true
                },
                "output_pinned_memory": {
                        "enable": true
                },
                "gather_kernel_buffer_threshold": 0,
                "eager_batching": false
        },
        "instance_group": [{
                "name": "fc_model_onnx",
                "kind": "KIND_GPU",
                "count": 1,
                "gpus": [0],
                "secondary_devices": [],
                "profile": [],
                "passive": false,
                "host_policy": ""
        }],
        "default_model_filename": "model.onnx",
        "cc_model_filenames": {},
        "metric_tags": {},
        "parameters": {},
        "model_warmup": []
}

通过JSON的输出配置。如torch版本一样, 在"/home/triton/model_repository/fc_model_onnx" 目录下新建 config.pbtxt 文件,并修改如下:(格式要求详见model_configuration

name: "fc_model_onnx" 
platform: "onnxruntime_onnx" 
max_batch_size : 0 
input [
  {
    name: "input" 
    data_type: TYPE_INT64 
    dims: [2, 3]  
  }
]
output [
  {
    name: "output1" 
    data_type: TYPE_FP32
    dims: [2, 3, 4]
  },
  {
    name: "output2"
    data_type: TYPE_FP32
    dims: [2, 3, 8]
  }
]

3.5 🌟triton服务重启🌟

因为有了灵活的配置文件,重新启动一下Triton
注意,如果有配置文件后,之后的每次启动都使用下面的这个命令

# 设置 strict-model-config=True  严格按config文件
sudo docker run --gpus=1 --rm -p8000:8000 -p8001:8001 -p8002:8002  -v /home/triton/model_repository:/models nvcr.io/nvidia/tritonserver:22.05-py3 tritonserver --model-repository=/models --strict-model-config=True
# 如果端口被占用 重启一下docker
sudo systemctl restart docker

3.6 测试Triton服务

3.6.1 http测试代码

Torch版本

import numpy as np
import tritonclient.http as httpclient

triton_client = httpclient.InferenceServerClient(url="localhost:8000", verbose=False)

model_name = "fc_model_pt"

inputs = [
    httpclient.InferInput('input__0', [2, 3], "INT64")
]
outputs = [
    httpclient.InferRequestedOutput('output__0'),
    httpclient.InferRequestedOutput('output__1')
]

inputs[0].set_data_from_numpy(np.random.randint(0, high=5, size=(2, 3)))

results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

print(results.as_numpy("output__0"))
print(results.as_numpy("output__1"))

onnx版本

import numpy as np
import tritonclient.http as httpclient

triton_client = httpclient.InferenceServerClient(url="localhost:8000", verbose=False)

model_name = "fc_model_onnx"

inputs = [
    httpclient.InferInput('input', [2, 3], "INT64")
]
outputs = [
    httpclient.InferRequestedOutput('output1'),
    httpclient.InferRequestedOutput('output2')
]

inputs[0].set_data_from_numpy(np.random.randint(0, high=5, size=(2, 3)))

results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

print(results.as_numpy("output1"))
print(results.as_numpy("output2"))

3.6.2 GRPC测试代码

torch版本

import numpy as np
import tritonclient.grpc as grpcclient

triton_client = grpcclient.InferenceServerClient(url="localhost:8001", verbose=False)

model_name = "fc_model_pt"

inputs = [
    grpcclient.InferInput('input__0', [2, 3], "INT64")
]
outputs = [
    grpcclient.InferRequestedOutput('output__0'),
    grpcclient.InferRequestedOutput('output__1')
]

inputs[0].set_data_from_numpy(np.random.randint(0, high=5, size=(2, 3)))

results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

print(results.as_numpy("output__0"))
print(results.as_numpy("output__1"))

onnx版本

import numpy as np
import tritonclient.grpc as grpcclient

triton_client = grpcclient.InferenceServerClient(url="localhost:8001", verbose=False)

model_name = "fc_model_onnx"

inputs = [
    grpcclient.InferInput('input', [2, 3], "INT64")
]
outputs = [
    grpcclient.InferRequestedOutput('output1'),
    grpcclient.InferRequestedOutput('output2')
]

inputs[0].set_data_from_numpy(np.random.randint(0, high=5, size=(2, 3)))

results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

print(results.as_numpy("output1"))
print(results.as_numpy("output2"))

3.7 7. 将数据预处理和模型预测全部集成在Triton中

在模型库(/home/triton/model_repository)新建Python backend的model

mkdir -p /home/triton/model_repository/<your python backend model name>/<version>

简单测试先使用:
mkdir -p /home/triton/model_repository/custom_model/1

在custom_model/1/ 目录下新建 model.py文件。
model.py 中需要提供三个接口:initialize, execute, finalize。其中 initialize和 finalize是模型实例初始化、模型实例清理的时候会调用的。如果有 n 个模型实例,那么会调用 n 次这两个函数。

import json
import numpy as np
import triton_python_backend_utils as pb_utils


class TritonPythonModel:
    """Your Python model must use the same class name. Every Python model
    that is created must have "TritonPythonModel" as the class name.
    """

    def initialize(self, args):
        """`initialize` is called only once when the model is being loaded.
        Implementing `initialize` function is optional. This function allows
        the model to intialize any state associated with this model.
        Parameters
        ----------
        args : dict
          Both keys and values are strings. The dictionary keys and values are:
          * model_config: A JSON string containing the model configuration
          * model_instance_kind: A string containing model instance kind
          * model_instance_device_id: A string containing model instance device ID
          * model_repository: Model repository path
          * model_version: Model version
          * model_name: Model name
        """

        # You must parse model_config. JSON string is not parsed here
        self.model_config = model_config = json.loads(args['model_config'])

        # Get output__0 configuration
        output0_config = pb_utils.get_output_config_by_name(
            model_config, "output__0")

        # Get output__1 configuration
        output1_config = pb_utils.get_output_config_by_name(
            model_config, "output__1")

        # Convert Triton types to numpy types
        self.output0_dtype = pb_utils.triton_string_to_numpy(output0_config['data_type'])
        self.output1_dtype = pb_utils.triton_string_to_numpy(output1_config['data_type'])

    def execute(self, requests):
        """
        requests : list
          A list of pb_utils.InferenceRequest
        Returns
        -------
        list
          A list of pb_utils.InferenceResponse. The length of this list must
          be the same as `requests`
        """

        output0_dtype = self.output0_dtype
        output1_dtype = self.output1_dtype

        responses = []

        # Every Python backend must iterate over everyone of the requests
        # and create a pb_utils.InferenceResponse for each of them.
        for request in requests:
            # get input request tensor
            in_0 = pb_utils.get_input_tensor_by_name(request, "input__0")

            # model inferencece clent
            inference_request = pb_utils.InferenceRequest(
                model_name='fc_model_pt',
                requested_output_names=['output__0', 'output__1'],
                inputs=[in_0])
            # model forward
            inference_response = inference_request.exec()
            
            # get output tensor
            out_tensor_0 = pb_utils.get_output_tensor_by_name(inference_response, 'output__0')
            out_tensor_1 = pb_utils.get_output_tensor_by_name(inference_response, 'output__1')
            
            # to response
            inference_response = pb_utils.InferenceResponse(output_tensors=[out_tensor_0, out_tensor_1])
            responses.append(inference_response)
        
        return responses

    def finalize(self):
        """`finalize` is called only once when the model is being unloaded.
        Implementing `finalize` function is OPTIONAL. This function allows
        the model to perform any necessary clean ups before exit.
        """
        print('Cleaning up...')

在custom_model/目录下新建 config.pbtxt文件。编写config

name: "custom_model"
backend: "python"
input [
  {
    name: "input__0"
    data_type: TYPE_INT64
    dims: [ -1, -1 ]
  }
]
output [
  {
    name: "output__0" 
    data_type: TYPE_FP32
    dims: [ -1, -1, 4 ]
  },
  {
    name: "output__1"
    data_type: TYPE_FP32
    dims: [ -1, -1, 8 ]
  }
]

3.6.8. 测试集成预处理和模型推理的接口

import numpy as np
import tritonclient.grpc as grpcclient

triton_client = grpcclient.InferenceServerClient(url="localhost:8001", verbose=False)

model_name = "custom_model"

inputs = [
    grpcclient.InferInput('input__0', [2, 3], "INT64")
]
outputs = [
    grpcclient.InferRequestedOutput('output__0'),
    grpcclient.InferRequestedOutput('output__1')
]

inputs[0].set_data_from_numpy(np.random.randint(0, high=5, size=(2, 3)))

results = triton_client.infer(model_name=model_name, inputs=inputs, outputs=outputs)

print(results.as_numpy('output__0'))
print(results.as_numpy('output__1'))

或者使用接口测试

import requests
import numpy as np

request_data = {
"inputs": [{
    "name": "input__0",
    "shape": [1, 2],
    "datatype": "INT64",
    "data": [[1, 2]]
}],
"outputs": [{"name": "output__0"}, {"name": "output__1"}]
}
res = requests.post(url="http://localhost:8000/v2/models/fc_model_pt/versions/1/infer",json=request_data).json()
# 单独跑fc_model_pt forward
print(res)

res = requests.post(url="http://localhost:8000/v2/models/custom_model/versions/1/infer",json=request_data).json()
# 跑preprocess+inference
print(res)
  • 12
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 8
    评论
Transformer模型部署指的是将训练好的Transformer模型应用于实际生产环境中,以进行预测或推理任务。以下是一个关于如何进行Transformer模型部署的简要步骤。 首先,需要将训练好的Transformer模型保存为某种格式,常见的格式包括TensorFlow SavedModel和PyTorch模型。这样的保存格式能够保留模型的结构、参数以及其他必要的信息。 接下来,将已保存的模型加载到生产环境中的推理引擎中。推理引擎可以是TensorFlow Serving、Triton Inference Server、ONNX Runtime等等。这些推理引擎提供了一个API,使得模型可以在生产环境中进行推理。 在加载模型之前,需要确定模型的输入和输出格式。Transformer模型的输入通常是一组序列数据,如文本序列。可以使用词嵌入技术将输入数据转换为模型能够接受的向量表示形式。模型的输出可以是分类标签、预测值或是生成的文本序列等。 在推理引擎中加载模型后,就可以提供输入数据并进行推理了。可以通过编写一些API端点,接收输入数据,将其转换为模型能够接受的格式,并将处理后的数据输入到模型中进行预测或推理。推理引擎将输出结果返回给调用方。 为了提高系统性能和资源利用率,可以使用并行化和批量化技术对推理引擎进行优化。这意味着可以同时处理多个输入,并在同一时间进行推理,以提高系统的吞吐量和响应速度。 最后,为了保证部署的Transformer模型在生产环境中的稳定性和可用性,可以使用监控和日志系统来监控模型性能和运行状况。这样可以及时发现和解决潜在的问题。 总的来说,Transformer模型部署需要将训练好的模型保存为合适的格式,加载到推理引擎中,并实现输入数据的预处理和输出结果的后处理。通过优化和监控系统性能,可以确保模型在生产环境中的稳定运行。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值