leetcode 32——最长有效括号 JAVA

在这里插入图片描述

思路:

看到“最长…子串”这样的字眼,第一时间想到的就是动态规划,其中最核心的部分就是状态转移方程的确定,对于此题来说,我将dp[i]的意义定义为:以s[i]结尾的最长有效子串的长度,所以,如果s[i]为 ‘(’,那么dp[i] == 0,因为有效的子串不可能以 ‘(’ 结尾

而对于s[i] 为‘)’的情况来说,需要考虑两种情况:

1.s[i-1]=‘(’,也就是"…()"的形式,那么dp[i]=dp[i-2]+2,这很容易距离验证

2.s[i-1]=’)’,也就是"…))"的形式,要首先确定是否存在与最后一个’)'对应的‘(’,其位置应该是i-dp[i-1]-1,若不存在则dp[i]=0,若存在,dp[i]应等于dp[i-1]+2,再加上i-dp[i-1]-1之前的长度,即:

dp[i]=dp[i-1]+2+dp[i-dp[i-1]-2];

代码:

public class Solution {
    public int longestValidParentheses(String s) {
        int maxans = 0;
        int dp[] = new int[s.length()];
        for (int i = 1; i < s.length(); i++) {
            if (s.charAt(i) == ')') {
                if (s.charAt(i - 1) == '(') {
                    dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
                } else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
                    dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
                }
                maxans = Math.max(maxans, dp[i]);
            }
        }
        return maxans;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值