思路:
看到“最长…子串”这样的字眼,第一时间想到的就是动态规划,其中最核心的部分就是状态转移方程的确定,对于此题来说,我将dp[i]的意义定义为:以s[i]结尾的最长有效子串的长度,所以,如果s[i]为 ‘(’,那么dp[i] == 0,因为有效的子串不可能以 ‘(’ 结尾
而对于s[i] 为‘)’的情况来说,需要考虑两种情况:
1.s[i-1]=‘(’,也就是"…()"的形式,那么dp[i]=dp[i-2]+2,这很容易距离验证
2.s[i-1]=’)’,也就是"…))"的形式,要首先确定是否存在与最后一个’)'对应的‘(’,其位置应该是i-dp[i-1]-1,若不存在则dp[i]=0,若存在,dp[i]应等于dp[i-1]+2,再加上i-dp[i-1]-1之前的长度,即:
dp[i]=dp[i-1]+2+dp[i-dp[i-1]-2];
代码:
public class Solution {
public int longestValidParentheses(String s) {
int maxans = 0;
int dp[] = new int[s.length()];
for (int i = 1; i < s.length(); i++) {
if (s.charAt(i) == ')') {
if (s.charAt(i - 1) == '(') {
dp[i] = (i >= 2 ? dp[i - 2] : 0) + 2;
} else if (i - dp[i - 1] > 0 && s.charAt(i - dp[i - 1] - 1) == '(') {
dp[i] = dp[i - 1] + ((i - dp[i - 1]) >= 2 ? dp[i - dp[i - 1] - 2] : 0) + 2;
}
maxans = Math.max(maxans, dp[i]);
}
}
return maxans;
}
}