canny 算法 python实现, 双边滤波--自适应阈值改进--形态学操作

# -*- coding: utf-8 -*-
import numpy as np
import cv2
import os
import csv
#高斯滤波
def smooth(image, sigma=1.4, length=5):
    # Compute gaussian filter
    k = length // 2
    gaussian = np.zeros([length, length])
    for i in range(length):
        for j in range(length):
            gaussian[i, j] = np.exp(-((i - k) ** 2 + (j - k) ** 2) / (2 * sigma ** 2))
    gaussian /= 2 * np.pi * sigma ** 2
    gaussian = gaussian / np.sum(gaussian)

    W, H = image.shape
    new_image = np.zeros([W - k * 2, H - k * 2])

    for i in range(W - 2 * k):
        for j in range(H - 2 * k):
            new_image[i, j] = np.sum(image[i:i + length, j:j + length] * gaussian)

    new_image = np.uint8(new_image)

    return new_image


# 双边滤波
def bilateral_filter(image, d=3, sigmaColor=20, sigmaSpace=40):
    # 应用双边滤波
    filtered_image = cv2.bilateralFilter(image, d, sigmaColor, sigmaSpace)
    return filtered
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值