基于混淆矩阵的Kappa系数的计算

代码,这样算才是正确的,原先踩了其他的坑!

import numpy as np

# 计算混淆矩阵的kappa
def kappa(confusion_matrix):
    pe_rows = np.sum(confusion_matrix, axis=0)
    pe_cols = np.sum(confusion_matrix, axis=1)
    sum_total = sum(pe_cols)
    pe = np.dot(pe_rows, pe_cols) / float(sum_total ** 2)
    po = np.trace(confusion_matrix) / float(sum_total)
    return (po - pe) / (1 - pe)

# 定义一个列表
list_ = [[50., 0., 0., 0., 0., 0., 0., 0.],
         [0., 50., 0., 0., 0., 0., 0., 0.],
         [0., 0., 50., 0., 0., 0., 0., 0.],
         [0., 0., 0., 50., 0., 0., 0., 0.],
         [0., 0., 0., 0., 50., 0., 0., 0.],
         [0., 0., 0., 0., 0., 50., 0., 0.],
         [0., 0., 0., 0., 0., 0., 50., 0.],
         [0., 0., 0., 0., 0., 0.,  0., 50.]]
# 将列表转为numpy,当作混淆矩阵
Confusion_Matrix = np.array(list_)

# 计算kappa值
K = kappa(Confusion_Matrix)
print("Kappa值为", K)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值