高数好难啊!

高数好难啊!

重积分的应用

一、曲面的面积

设曲面 S S 由方程

z=f(x,y)

给出, D D 为全面S xOy x O y 面上的投影区域,函数 f(x,y) f ( x , y ) D D 上具有连续偏导数fx(x,y) fy(x,y) f y ( x , y ) ,要计算曲面 S S 的面积A

则类似曲线长度计算

A=D1+(zx)2+(zy)2dxdy A = ∬ D 1 + ( ∂ z ∂ x ) 2 + ( ∂ z ∂ y ) 2 d x d y
.

上面的公式就是计算曲面面积的公式

设曲面的方程为 x=g(y,z) x = g ( y , z ) y=h(z,x) y = h ( z , x ) ,可分别把曲面投影到 yOz y O z 面上(投影区域记作 Dyz D y z )或 zOx z O x 面上(投影面积记作 Dzx D z x ),类似的可得

A=Dyz1+(xy)2+(xz)2dydz A = ∬ D y z 1 + ( ∂ x ∂ y ) 2 + ( ∂ x ∂ z ) 2 d y d z ,

A=Dzx1+(yz)2+(yx)2dzdx A = ∬ D z x 1 + ( ∂ y ∂ z ) 2 + ( ∂ y ∂ x ) 2 d z d x .

二、质心

先讨论平面薄片的质心,设在点 (x,y) ( x , y ) 处的面密度为 μ(x,y) μ ( x , y ) 假定 μ(x,y) μ ( x , y ) D D 上连续。则下面给出该薄片的质心的坐标(x¯,y¯)

x¯=MyM=Dxμ(x,y)dσDμ(x,y)σ x ¯ = M y M = ∬ D x μ ( x , y ) d σ ∬ D μ ( x , y ) σ

y¯=MxM=Dyμ(x,y)dσDμ(x,y)dσ y ¯ = M x M = ∬ D y μ ( x , y ) d σ ∬ D μ ( x , y ) d σ

上面两个公式就是求薄片质心的公式

类似的,占有空间有限闭区域 Ω Ω 在点 (x,y,z) ( x , y , z ) 的密度为 ρ(x,y,z) ρ ( x , y , z ) 的物体的质心坐标 (x¯,y¯,z¯) ( x ¯ , y ¯ , z ¯ ) 由下面的公式给出

x¯=1MΩxρ(x,y,z)dv x ¯ = 1 M ∭ Ω x ρ ( x , y , z ) d v

y¯=1MΩyρ(x,y,z)dv y ¯ = 1 M ∭ Ω y ρ ( x , y , z ) d v

z¯=1MΩzρ(x,y,z)dv z ¯ = 1 M ∭ Ω z ρ ( x , y , z ) d v

三、转动惯量

先讨论平面薄片的转动惯量

设有一薄片,占有 xOy x O y 面上的闭区域 D D ,在点(x,y)处的面密度为 μ(x,y) μ ( x , y ) ,假定 μ(x,y) μ ( x , y ) D D 上连续,现在要求该薄片对于x轴的转动惯量 Ix I x 以及对于 y y 轴的转动惯量Iy

则由下面的公式给出

Ix=Dy2μ(x,y)dσ I x = ∬ D y 2 μ ( x , y ) d σ

Iy=Dx2μ(x,y)dσ I y = ∬ D x 2 μ ( x , y ) d σ

四、引力

下面讨论空间一物体对于物体外一点 P0(x0,y0,z0) P 0 ( x 0 , y 0 , z 0 ) 处单位质量的质点的引力问题

设物体占有空间的有界闭区域 Ω Ω ,它在点 (x,y,z) ( x , y , z ) 点处的密度为 ρ(x,y,z) ρ ( x , y , z ) ,并假定 ρ(x,y,z) ρ ( x , y , z ) Ω Ω 上连续,这个闭区域的体积记作 dv d v ,设 F F 为所求引力则

F=(Fx,Fy,Fz) F = ( F x , F y , F z )

  • Fx=ΩGρ(x,y,z)(xx0)r3dv F x = ∭ Ω G ρ ( x , y , z ) ( x − x 0 ) r 3 d v
  • Fy=ΩGρ(x,y,z)(yy0)r3dv F y = ∭ Ω G ρ ( x , y , z ) ( y − y 0 ) r 3 d v
  • Fz=ΩGρ(x,y,z)(zz0)r3dv F z = ∭ Ω G ρ ( x , y , z ) ( z − z 0 ) r 3 d v

如果考虑平面薄片对薄片外一点 P0(x0,y0,z0) P 0 ( x 0 , y 0 , z 0 ) 处单位质量的质点的引力,

设平面薄片占有 xOy x O y 平面上的有界闭区域 D D ,其面密度为μ(x,y),那么只需要将上式中的密度 ρ(x,y,z) ρ ( x , y , z ) 换成面密度 μ(x,y) μ ( x , y ) ,将 Ω Ω 上的三重积分换成 D D 上的二重积分,就得到相应的计算公式

对弧长的曲线积分

一、对弧长的曲线积分的概念与性质

曲线形构件的质量

在设计曲线形构件时,为了合理使用材料,将根据该构件不同部分的受力情况决定线密度(单位长度的质量)。假设该构件所处的位置在xOy面上的一段曲线弧 L L 上,端点为A,B,在 L L 上任一点(x,y)处的线密度为 μ(x,y) μ ( x , y ) ,现在计算该构件的质量 m m 有如下性质

  • 性质 1α,β为常数,则

    L[αf(x,y)+βg(x,y)]ds=αLf(x,y)ds+βLg(x,y)ds ∫ L [ α f ( x , y ) + β g ( x , y ) ] d s = α ∫ L f ( x , y ) d s + β ∫ L g ( x , y ) d s

    • 性质 2 若积分弧段 L L 可分成两段光滑曲线弧L1,L2,则

      Lf(x,y)ds=L1f(x,y)ds+L2f(x,y)ds ∫ L f ( x , y ) d s = ∫ L 1 f ( x , y ) d s + ∫ L 2 f ( x , y ) d s

    • 性质 3 设在 L L f(x,y)g(x,y) ,则

      Lf(x,y)dsLg(x,y)ds ∫ L f ( x , y ) d s ≤ ∫ L g ( x , y ) d s

      特别地,有

      Lf(x,y)dsL|f(x,y)|ds | ∫ L f ( x , y ) d s | ≤ ∫ L | f ( x , y ) | d s

    • 二、对弧长的曲线积分的计算法

      f(x,y) f ( x , y ) 在曲线弧 L L 上有定义且连续,L的参数方程为

      {x=φ(t),y=ψ(t) { x = φ ( t ) , y = ψ ( t )

      其中 αβ α ≤ β ,若 φ2(t)+ψ2(t)0 φ ′ 2 ( t ) + ψ ′ 2 ( t ) ≠ 0 则曲线积分 Lf(x,y)ds ∫ L f ( x , y ) d s 存在,且

      Lf(x,y)ds=βαf[φ(t),ψ(t)]φ2(t)+ψ2(t)dt ∫ L f ( x , y ) d s = ∫ α β f [ φ ( t ) , ψ ( t ) ] φ ′ 2 ( t ) + ψ ′ 2 ( t ) d t (α<β) ( α < β )

      推广到空间曲线弧 Γ Γ 由参数方程

      x=φ(t),y=ψ(t),z=ω(t) x = φ ( t ) , y = ψ ( t ) , z = ω ( t ) (αtβ) ( α ≤ t ≤ β )

      给出的情形,这时有

      Γf(x,y,z)ds=βαf[φ(t),ψ(t),ω(t)]φ2(t),ψ2(t),ω2(t)dt ∫ Γ f ( x , y , z ) d s = ∫ α β f [ φ ( t ) , ψ ( t ) , ω ( t ) ] φ ′ 2 ( t ) , ψ ′ 2 ( t ) , ω ′ 2 ( t ) d t

      (α<β) ( α < β )

      对坐标的曲线积分

      一、对坐标的曲线积分的概念与性质

      变力沿曲线所做的功 设一个质点在 xOy x O y 面内收到力

      F(x,y)=P(x,y)i+Q(x,y)j F ( x , y ) = P ( x , y ) i + Q ( x , y ) j

      的作用,计算质点从曲线端点 A A B受变力 F F 所做的功,则在有向曲线弧 L L 上对x的曲线积分记作 LP(x,y)dx ∫ L P ( x , y ) d x ,类似的,对 y y 的曲线积分记作LQ(x,y)dy,则有如下性质

      • 性质 1 α α β β 为常数,则

        L[αF1(x,y)+βF2(x,y)]dr=αLF1(x,y)dr+βLF2(x,y)dr ∫ L [ α F 1 ( x , y ) + β F 2 ( x , y ) ] d r = α ∫ L F 1 ( x , y ) d r + β ∫ L F 2 ( x , y ) d r

      • 性质 2 若有向曲线弧 L L 可分为两段光滑的有向线段弧L1 L2 L 2 ,则

      LF(x,y)dr=L1F(x,y)+L2F(x,y)dr ∫ L F ( x , y ) d r = ∫ L 1 F ( x , y ) + ∫ L 2 F ( x , y ) d r

      • 性质 3 L L 是有向光滑曲线弧,L L L 的反向曲线弧,则

      LF(x,y)dr=LF(x,y)dr

      由上面的性质可以看出,对坐标的曲线积分是有方向的

      二、对坐标曲线积分的计算法

      定理 P(x,y) P ( x , y ) Q(x,y) Q ( x , y ) 在有向曲线弧 L L 上有定义且连续,L的参数方程为

      {x=φ(t),y=ψ(t), { x = φ ( t ) , y = ψ ( t ) ,


      LP(x,y)dx+Q(x,y)dy=βα{P[φ(t),ψ(t)]φ(t)+Q[φ(t),ψ(t)]ψ(t)}dt ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ α β { P [ φ ( t ) , ψ ( t ) ] φ ′ ( t ) + Q [ φ ( t ) , ψ ( t ) ] ψ ′ ( t ) } d t

      这个公式较容易理解,将 dt d t 乘进去后就是对 x x 方向和y方向积分求做功

      三、两类曲线积分之间的联系

      经过推导如有 P(x,y) P ( x , y ) Q(x,y) Q ( x , y ) ,则有

      LPdx+Qdy=L(Pcosα+Qcosβ)ds ∫ L P d x + Q d y = ∫ L ( P c o s α + Q c o s β ) d s

      其中 α(x,y) α ( x , y ) β(x,y) β ( x , y ) 为有向曲线弧 L L 在点(x,y)处切向量的方向角

      类似地可以知道,空间曲线弧 Γ Γ 上的两类曲线积分之间有如下的联系:

      ΓPdx+Qdy+Rdz=Γ(Pcosα+Qcosβ+Rcosγ)ds ∫ Γ P d x + Q d y + R d z = ∫ Γ ( P c o s α + Q c o s β + R c o s γ ) d s

      其中 α(x,y,z) α ( x , y , z ) β(x,y,z) β ( x , y , z ) γ(x,y,z) γ ( x , y , z ) 为有向曲线弧 Γ Γ 在点 (x,y,z) ( x , y , z ) 处的切向量的方向角

      格林公式及其应用

      一、格林公式

      在一元函数中有牛顿-莱布尼兹公式

      baF(x)dx=F(b)F(a) ∫ a b F ′ ( x ) d x = F ( b ) − F ( a )

      定理 1 设闭区域 D D 由分段光滑的曲线l围成,若函数 P(x,y) P ( x , y ) Q(x,y) Q ( x , y ) D D 上具有连续的一阶偏导数,则有

      D(QxPx)dxdy=LPdx+Qdy

      其中 L L ​ D D ​ 的取正向的曲线

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值