《高等数学》全章节笔记

第一章——函数与极限

第一节:集合、映射、函数

一,集合

1.概念

(1)集合  元素   有限集合   无限集合

(2)集合的表示方法

集合:A.   B.  C. ...     元素:a. b. c. ...

a ∈  A  (a属于集合A)  a ∉ A  (a不属与集合A)

表示方法:列举法、描述法

(3)集合之间的关系

A为B的子集 A⊂B  (A包含在B里);      B为A的子集   B⊃A   (B包含在A里);

两集合相等的充分必要条件是:A⊂B 且B⊃A

A⊂B 且A≠B  称A为B的一个真子集。

空集:ϕ

2.运算法则

(1)交换律

交换律表明,在集合的并集和交集中,集合的顺序可以交换而不影响结果。

  • 并集交换律AB=BA
  • 交集交换律AB=BA

(2) 结合律

结合律表明,当对集合进行连续运算时,运算的顺序可以改变而不影响最终结果。

  • 并集结合律:(AB)∪C=A∪(BC)
  • 交集结合律:(AB)∩C=A∩(BC)

(3)分配律

分配律描述了并集与交集之间的分配关系。

  • 分配律(并集对交集的分配)A∩(BC)=(AB)∪(AC)
  • 分配律(交集对并集的分配):虽然直接的形式A∪(BC)=(AB)∩(AC)也是正确的,但更常见的是使用德·摩根律的逆形式来间接体现这一点。

(4)幂等律

幂等律表明,集合与其自身的并集或交集等于集合本身。

  • 并集幂等律AA=A
  • 交集幂等律AA=A

(5)同一律

同一律描述了集合与全集或空集进行运算时的特性。

  • 并集同一律A∪∅=A(任何集合与空集的并集等于该集合本身)
  • 交集同一律:在某些情况下,如果U表示全集,则AU=A(集合与全集的交集等于该集合本身)

(6) 零律

零律特别涉及空集在集合运算中的作用。

  • 交集零律A∩∅=∅(任何集合与空集的交集是空集)
  • 并集零律(通常不单独提及,但可通过同一律和空集性质理解)

(7) 吸收律

吸收律表

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值