第一章——函数与极限
第一节:集合、映射、函数
一,集合
1.概念
(1)集合 元素 有限集合 无限集合
(2)集合的表示方法
集合:A. B. C. ... 元素:a. b. c. ...
a ∈ A (a属于集合A) a ∉ A (a不属与集合A)
表示方法:列举法、描述法
(3)集合之间的关系
A为B的子集 A⊂B (A包含在B里); B为A的子集 B⊃A (B包含在A里);
两集合相等的充分必要条件是:A⊂B 且B⊃A
A⊂B 且A≠B 称A为B的一个真子集。
空集:ϕ
2.运算法则
(1)交换律
交换律表明,在集合的并集和交集中,集合的顺序可以交换而不影响结果。
- 并集交换律:A∪B=B∪A
- 交集交换律:A∩B=B∩A
(2) 结合律
结合律表明,当对集合进行连续运算时,运算的顺序可以改变而不影响最终结果。
- 并集结合律:(A∪B)∪C=A∪(B∪C)
- 交集结合律:(A∩B)∩C=A∩(B∩C)
(3)分配律
分配律描述了并集与交集之间的分配关系。
- 分配律(并集对交集的分配):A∩(B∪C)=(A∩B)∪(A∩C)
- 分配律(交集对并集的分配):虽然直接的形式A∪(B∩C)=(A∪B)∩(A∪C)也是正确的,但更常见的是使用德·摩根律的逆形式来间接体现这一点。
(4)幂等律
幂等律表明,集合与其自身的并集或交集等于集合本身。
- 并集幂等律:A∪A=A
- 交集幂等律:A∩A=A
(5)同一律
同一律描述了集合与全集或空集进行运算时的特性。
- 并集同一律:A∪∅=A(任何集合与空集的并集等于该集合本身)
- 交集同一律:在某些情况下,如果U表示全集,则A∩U=A(集合与全集的交集等于该集合本身)
(6) 零律
零律特别涉及空集在集合运算中的作用。
- 交集零律:A∩∅=∅(任何集合与空集的交集是空集)
- 并集零律(通常不单独提及,但可通过同一律和空集性质理解)
(7) 吸收律
吸收律表