Kafka消费者手动提交消息偏移

 

生产者每次调用poll()方法时,它总是返回由生产者写入Kafka但还没有消费的消息,如果消费者一致处于运行状态,那么分区消息偏移量就没什么用处,但是如果消费者发生崩溃或者有新的消费者加入群组,就会触发再均衡,完成再均衡之后,每个消费可能分配到新的分区,而不是之前处理的那个,为了能够继续之前的工作,消费者需要读取每个分区最后一次提交的偏移量,然后从偏移量制定的地方开始工作。消费者会往一个__consumer_offser的主题发送消息,消息里包含每个分区的偏移量。

1.同步提交

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Collections;
import java.util.Properties;

/**
 * Created by zhangpeiran on 2018/10/9.
 */
public class MyConsumer {

    public static void main(String[] args){
        Properties properties = new Properties();
        properties.put("bootstrap.servers","ip:9092");
        properties.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("group.id","DemoConsumerGroup");

        //默认值为latest,当消费者读取的分区没有偏移量或偏移量无效时,消费者将从最新的记录开始读
        //当一个消费group第一次订阅主题时,符合这种情况,在Consumer启动之前,Producer生产的数据不会被读取
        //置为earliest,表示从分区起始位置读取消息
        properties.put("auto.offset.reset","earliest");

        //设置手动提交消息偏移
        properties.put("enable.auto.commit","false");

        //一次拉取的最大消息条数
        properties.put("max.poll.records",10);


        KafkaConsumer<String,String> consumer = new KafkaConsumer<String, String>(properties);

        consumer.subscribe(Collections.singletonList("Demo3"));

        int count = 0;
        try {
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(10);
                for(ConsumerRecord<String ,String> record : records){
                    count ++;
                    if(count == 50)
                        consumer.commitSync();
                    System.out.println(record.topic() + "," + record.partition() + "," + record.offset() + "," + record.key() + "," + record.value());
                }
                System.out.println(count);
            }
        } finally {
            consumer.close();
        }
    }
}

说明:在上述例子中,主题Demo3中已经有100条消息,第一次远行Consumer时,在读取到50条消息时,提交一次偏移量,输出的count值为100;第二次不改变消费group,会从51条开始读取,所以输出的count值为50

2. 异步提交,同步提交时,在broker回应指,会一直阻塞、重试,限制应用的吞吐量,因此可以采用异步提交,异步提交失败时不会重试,因为如果提交失败时因为临时的问题导致的,那么后续的提交总户有成功的。

consumer.commitAsync();

3. 同步、异步组合提交,确保消费者在关闭或者再均衡之前提交成功

import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;

import java.util.Collections;
import java.util.Properties;

/**
 * Created by zhangpeiran on 2018/10/9.
 */
public class MyConsumer {

    public static void main(String[] args){
        Properties properties = new Properties();
        properties.put("bootstrap.servers","ip:9092");
        properties.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("group.id","DemoConsumerGroup");

        //默认值为latest,当消费者读取的分区没有偏移量或偏移量无效时,消费者将从最新的记录开始读
        //当一个消费group第一次订阅主题时,符合这种情况,在Consumer启动之前,Producer生产的数据不会被读取
        //置为earliest,表示从分区起始位置读取消息
        properties.put("auto.offset.reset","earliest");

        //设置手动提交消息偏移
        properties.put("enable.auto.commit","false");

        //一次拉取的最大消息条数
        properties.put("max.poll.records",10);


        KafkaConsumer<String,String> consumer = new KafkaConsumer<String, String>(properties);

        consumer.subscribe(Collections.singletonList("Demo3"));

        int count = 0;
        try {
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(10);
                for(ConsumerRecord<String ,String> record : records){
                    count ++;
                    //if(count == 50)
                        //consumer.commitAsync();
                        //consumer.commitSync();
                    System.out.println(record.topic() + "," + record.partition() + "," + record.offset() + "," + record.key() + "," + record.value());
                }
                consumer.commitAsync();
                //System.out.println(count);
            }
        } finally {
            try {
                consumer.commitSync();
            } finally {
                consumer.close();
            }
            //consumer.close();
        }
    }
}

 5. 提交特定的偏移量。前面提交的是最后一个偏移量,poll可能返回了大批数据,这样在再均衡时,可能重复处理的消息比较多。消费者API提供了指定分区和偏移量来提交


import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.kafka.clients.consumer.ConsumerRecords;
import org.apache.kafka.clients.consumer.KafkaConsumer;
import org.apache.kafka.clients.consumer.OffsetAndMetadata;
import org.apache.kafka.common.TopicPartition;

import java.util.Collections;
import java.util.HashMap;
import java.util.Map;
import java.util.Properties;

/**
 * Created by zhangpeiran on 2018/10/9.
 */
public class MyConsumer {

    public static void main(String[] args){
        Properties properties = new Properties();
        properties.put("bootstrap.servers","ip:9092");
        properties.put("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer");
        properties.put("group.id","DemoConsumerGroup");

        //默认值为latest,当消费者读取的分区没有偏移量或偏移量无效时,消费者将从最新的记录开始读
        //当一个消费group第一次订阅主题时,符合这种情况,在Consumer启动之前,Producer生产的数据不会被读取
        //置为earliest,表示从分区起始位置读取消息
        properties.put("auto.offset.reset","earliest");

        //设置手动提交消息偏移
        properties.put("enable.auto.commit","false");

        //一次拉取的最大消息条数
        properties.put("max.poll.records",1000);


        KafkaConsumer<String,String> consumer = new KafkaConsumer<String, String>(properties);

        consumer.subscribe(Collections.singletonList("Demo5"));


        int cnt = 0;
        int count = 0;
        Map<TopicPartition,OffsetAndMetadata> currentOffsets = new HashMap<TopicPartition,OffsetAndMetadata>();
        try {
            while (true){
                ConsumerRecords<String,String> records = consumer.poll(10);
                for(ConsumerRecord<String ,String> record : records){
                    count ++;
                    //if(count == 50)
                        //consumer.commitAsync();
                        //consumer.commitSync();
                    
                    //offset + 1,下次消费者从该偏移量开始拉取消息
                    currentOffsets.put(new TopicPartition(record.topic(),record.partition()),new OffsetAndMetadata(record.offset()+1,"no"));
                    if ((count / 10 == 1) && (count % 10 == 0)){
                        System.out.println(count);
                        consumer.commitSync(currentOffsets);
                    }
                    System.out.println(record.topic() + "," + record.partition() + "," + record.offset() + "," + record.key() + "," + record.value());
                }
                //consumer.commitAsync();

                cnt ++;
            }
        } finally {
            try {
                //consumer.commitSync();
            } finally {
                consumer.close();
            }
            //consumer.close();
        }
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值