只说结论!
如果我们使用原始apache-kafka 依赖的API来消费数据:
- 如果enable.auto.commit为true,则表示自动提交,但不会在拉取数据之后立即提交。在一次poll的数据处理完毕之后,将会在下一次poll数据的时候,首先检查是否到达了auto.commit.interval.ms自动提交间隔的时间,如果到达了(默认5s),那么会提交此前拉取的消息的最大偏移量,否则不会提交。
- 如果enable.auto.commit为false,则表示手动提交,那么需要通过consumer.commitAsync()或者commitSync()手动提交偏移量,这两个方法将会提交目前最大的offset,否则重启之后将会消费此前的数据。
如果使用spring-kafka 的@Listener注解来消费数据:
-
如果enable.auto.commit为true,则表示自动提交,但不会在拉取数据之后立即提交。在一次poll的数据处理完毕之后,将会在下一次poll数据的时候,首先检查是否到达了auto.commit.interval.ms自动提交间隔的时间,如果到达了(默认5s),那么会提交此前拉去的消息的最大偏移量,否则不会提交。
-
如果enable.auto.commit为false,则表示手动提交,此时需要注意选择提交的模式AckMode。
- BATCH:默认的提交模式。当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交,由Spring帮我们提交。
- RECORD:当每一条记录被消费者监听器(ListenerConsumer)处理之后提交,由Spring帮我们提交。
- TIME:当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,距离上次提交时间大于TIME时提交,由Spring帮我们提交。
- COUNT:当每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后,被处理record数量大于等于COUNT时提交,由Spring帮我们提交。
- COUNT_TIME:TIME和COUNT有一个条件满足时提交,由Spring帮我们提交。
- MANUAL:需要对监听消息的方法中引入 Acknowledgment参数,并在代码中调用acknowledge()方法进行手动提交。实际上,对于每一批poll()的数据,每次调用acknowledge()方法之后仅仅是将offset存放到本地map缓存,在下一次poll的时候,在poll新数据之前从缓存中拿出来批量提交,也就是说与BATCH有相同的语义。
- MANUAL_IMMEDIATE:需要对监听消息的方法中引入 Acknowledgment参数,并在代码中调用acknowledge()方法进行手动提交。实际上,对于每一批poll()的数据,每次调用acknowledge()方法之后立即进行偏移量的提交。
由于默认的提交模式是BATCH,因此在使用@Listener注解来消费数据时,即使enable.auto.commit为false,偏移量也会在每一批poll()的数据被消费者监听器(ListenerConsumer)处理之后提交,这里的提交实际上是手动提交,但是这个“手动提交”操作由Spring帮我们做了,因此如果不设置AckMode为MANUAL或者MANUAL_IMMEDIATE,我们仍然会觉得这些数据被“自动提交”了,实际上是由Spring帮我们执行了手动提交的代码,造成误解。
MANUAL和MANUAL_IMMEDIATE的区别是:MANUAL_IMMEDIATE是消费完一个消息就提交,MANUAL是处理完一批消息(默认500)之后,在下一次拉取消息之前批量提交。
如果中间有一批数据没有提交,那么在一次消费过程中,这些没有提交的数据不会重复消费,而是会一直向后消费,除非重启消费者,会被再次消费。如果后面有消息的offset被提交,那么该offset之前的所有消息都算作已提交,重启之后也不会被再次消费。
相关文章:
如有需要交流,或者文章有误,请直接留言。另外希望点赞、收藏、关注,我将不间断更新各种Java学习博客!