极角的定义及其代码实现

极角的定义

在这里插入图片描述
如图所示,极坐标系中,每一个点M,都可以用其距离原点O的距离 ρ \rho ρ和OM与x轴的夹角 θ \theta θ唯一确定。M的极坐标为 ( ρ , θ ) (\rho,\theta) (ρ,θ),其中 θ \theta θ为极角。

极角的计算

设M点在直角坐标系中的坐标为 ( x , y ) (x,y) (x,y),原点O的坐标为 ( 0 , 0 ) (0,0) (0,0),则与极坐标存在如下等式关系:
{ ρ = x 2 + y 2 tan ⁡ ( θ ) = y x ( x ≠ 0 ) \begin{cases} \rho = x^2 + y ^ 2 \\ \tan(\theta) = \frac y x (x \neq 0)\end{cases} {ρ=x2+y2tan(θ)=xy(x=0) { x = ρ cos ⁡ ( θ ) y = ρ sin ⁡ ( θ ) \begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases} {x=ρcos(θ)y=ρsin(θ)
所以,极角 θ = arctan ⁡ ( y x ) \theta=\arctan(\frac y x) θ=arctan(xy)

代码实现

使用java.lang.Math的atan2函数,对于点M ( x , y ) (x,y) (x,y),其与原点O ( 0 , 0 ) (0,0) (0,0)的极角 θ = M a t h . a t a n 2 ( y , x ) \theta = Math.atan2(y, x) θ=Math.atan2(y,x)

public static double atan2(double y, double x)

如果O的坐标为 ( x 0 , y 0 ) (x_0,y_0) (x0,y0),点M ( x , y ) (x,y) (x,y)与O的极角为 θ = M a t h . a t a n 2 ( y − y 0 , x − x 0 ) \theta = Math.atan2(y-y_0, x-x_0) θ=Math.atan2(yy0,xx0)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值