人工智能安全与隐私【强烈推荐】

本次会议聚焦于人工智能安全与隐私,探讨了后门攻击和对抗样本的区分,强调寻找影响广泛且门槛低的攻击研究方向。沈超老师指出,由于人工智能领域的安全问题众多,通常只关注单一问题,而忽视了可能的级联效应。他还讨论了决策边界的敏感性,以及开源框架可能存在的安全漏洞,对于依赖他人模型的中小企业来说,可能存在后门攻击的风险。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

人工智能安全与隐私

写在前面的话

「人工智能安全与隐私」系列论坛由深圳市大数据研究院、中国图象图形学学会主办,第九期由中山大学网络空间安全学院、中国图象图形学学会视觉大数据专委会承办,香港中文大学(深圳)数据科学学院,深圳市人工智能学会协办。

我在11月23日上午在b站上看了直播,感受颇深,没看的小伙伴可以去关注一下他们的b站号。今天进行汇报的老师是沈超老师。大牛级别的人物,大家看简介。这篇博客主要是会议纪要,就不参杂个人理解了。
在这里插入图片描述

总结

我就简单谈一下自己的看法。
1、后门攻击和对抗样本
这两者很相似,但是要区分很难。后门攻击更具有目的性,需要触发器。我觉得不仅仅是在人工智能,在很多地方都有后门攻击,只是需要我们找到一个合适的场景。
2、研究方向
找到攻击,并且这个攻击门槛低影响大,就是一份很好的work。
3、为什么大家关注人工智能的安全问题只关注一个点,没有级联的考虑?
因为人工智能这里面存在太多安全问题,考虑一个已经有很多需要挖掘的地方,级联需要考虑模块的联系,这样发动的攻击效果过大也更难。
4、决策边界
关于那个车的决策偏向我觉得很有意思,改变亮度或者通过其他细小的变化使得决策发生完全变化。这样的场景值得去找。关于机器学习的决策边界影响的力度太大了。
5、框架问题
大家写模型都是调包调库,这些开源的框架都是人写的肯定存在漏洞。并且现在都是用别人的模型去跑,不会花费人力物力自己写模型,至少对于中小企业是不可能的,如果在这些需要购买或者开源的模型中加后门,所造成的攻击影响也是不言而喻的。

会议纪要

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

粥粥粥少女的拧发条鸟

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值