深度学习篇-Keras(初级)

第1关:构建模型

构建一个简单的模型,并且指定输入数据的尺寸:batch_size 为18,input_dim 为20。

from keras.models import Sequential
from keras.layers import Dense, Activation
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def input_values():
    model = Sequential()
    '''
    返回值:
    model: 一个顺序模型
    '''
    # 请在此添加代码 完成本关任务
    # 构建一个简单的模型,并且指定输入数据的尺寸:batch_size 为18,input_dim 为20。
    # ********** Begin *********#
    model.add(Dense(units=18,input_dim=20))
    # ********** End **********#

    # 返回model
    return model


第2关:Keras模型编译

本关任务:构建一个简单的模型,并对模型进行编译。

import warnings
warnings.filterwarnings('ignore')
from keras.models import Sequential
from keras.layers import Dense, Activation
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def compile_model():
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(1, activation='sigmoid'))
    '''
    返回值:
    model: 一个顺序模型
    '''
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    model.compile(optimizer='rmsprop',  
              loss='binary_crossentropy',  
              metrics=['accuracy']) 
    # ********** End **********#

    # 返回model
    return model
compile_model()

第3关:训练模型

本关任务:构建一个简单的模型,对模型进行训练。

from keras.models import Sequential
from keras.layers import Dense, Activation
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def fit_model():
    model = Sequential()
    model.add(Dense(32, activation='relu', input_dim=100))
    model.add(Dense(1, activation='sigmoid'))
    model.compile(optimizer='rmsprop',
                  loss='binary_crossentropy',
                  metrics=['accuracy'])
    # 生成虚拟数据
    data = np.random.random((1000, 100))
    labels = np.random.randint(2, size=(1000, 1))
    '''
    返回值:
    model: 一个顺序模型
    '''
    # 请在此添加代码 完成本关任务
    # ********** Begin *********#
    model.fit(data,labels,epochs=10,batch_size=64)
    # ********** End **********#
    # 返回model
    return model

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

粥粥粥少女的拧发条鸟

你的鼓励是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值