第1关:构建模型
构建一个简单的模型,并且指定输入数据的尺寸:batch_size 为18,input_dim 为20。
from keras.models import Sequential
from keras.layers import Dense, Activation
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def input_values():
model = Sequential()
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# 构建一个简单的模型,并且指定输入数据的尺寸:batch_size 为18,input_dim 为20。
# ********** Begin *********#
model.add(Dense(units=18,input_dim=20))
# ********** End **********#
# 返回model
return model
第2关:Keras模型编译
本关任务:构建一个简单的模型,并对模型进行编译。
import warnings
warnings.filterwarnings('ignore')
from keras.models import Sequential
from keras.layers import Dense, Activation
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def compile_model():
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# ********** Begin *********#
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# ********** End **********#
# 返回model
return model
compile_model()
第3关:训练模型
本关任务:构建一个简单的模型,对模型进行训练。
from keras.models import Sequential
from keras.layers import Dense, Activation
import os
import numpy as np
os.environ['TF_CPP_MIN_LOG_LEVEL']='3'
def fit_model():
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=100))
model.add(Dense(1, activation='sigmoid'))
model.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
# 生成虚拟数据
data = np.random.random((1000, 100))
labels = np.random.randint(2, size=(1000, 1))
'''
返回值:
model: 一个顺序模型
'''
# 请在此添加代码 完成本关任务
# ********** Begin *********#
model.fit(data,labels,epochs=10,batch_size=64)
# ********** End **********#
# 返回model
return model