meta learn =learn to learn
我们希望机器学习怎样去学习这件事情,就是学会语音辨识、图像辨识以后,它学会了如何去学习学习这件事情,而不是停留在语音和图像的任务上。
就是我们不需要自己去定义网络的结构以及训练策略,而是让机器自己能够找出这个函数,这个函数能够找出一个f,这个f能够处理我们的任务。
我们正常训练网络的步骤如下图所示,定义网络结构,初始化参数,根据梯度更新参数。
那么我们能不能够不用人为定义,而是网络自己去决定初始化参数、网络结构以及更新策略。MAML和reptile都是找初始化参数这样的方法。
我们在进行meta learning时,需要构建很多的任务,并且在每个任务中都有support set (train)和query set(test)。它常常与few-shot learning (小样本学习)搭配使用,因为meta learning 的训练任务很多,因此每个任务的样本很少。
有人在训练