元学习MAML reptile(1)-李宏毅老师课程学习笔记

元学习旨在使机器学习如何学习,超越特定任务如语音和图像识别。MAML和Reptile是寻找初始化参数的方法,避免手动定义网络结构和训练策略。在meta learning中,通过构建多个任务,使用support set和query set进行小样本学习。MAML关注训练后能达到最佳性能的初始化参数,而Reptile允许多次更新。在实际应用中,MAML和Reptile在机器翻译等任务上展现出优越性。
摘要由CSDN通过智能技术生成

meta learn =learn to learn

我们希望机器学习怎样去学习这件事情,就是学会语音辨识、图像辨识以后,它学会了如何去学习学习这件事情,而不是停留在语音和图像的任务上。
在这里插入图片描述
就是我们不需要自己去定义网络的结构以及训练策略,而是让机器自己能够找出这个函数,这个函数能够找出一个f,这个f能够处理我们的任务。

我们正常训练网络的步骤如下图所示,定义网络结构,初始化参数,根据梯度更新参数。

在这里插入图片描述
那么我们能不能够不用人为定义,而是网络自己去决定初始化参数、网络结构以及更新策略。MAML和reptile都是找初始化参数这样的方法。

我们在进行meta learning时,需要构建很多的任务,并且在每个任务中都有support set (train)和query set(test)。它常常与few-shot learning (小样本学习)搭配使用,因为meta learning 的训练任务很多,因此每个任务的样本很少。
在这里插入图片描述
有人在训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值