【洛谷3372】 线段树模板(lazy标记)

lazy思想:
举个例子,当要给[a,b]区间增加c的时候,发现了一个区间,这个区间被[a,b]区间包括,那么这个区间的sum+=c*(edge[i].r - edge[i].l + 1),并且给这个区间打上lazy标记。如果按正常的做法应该把这个区间的子区间也增加c,然而lazy标记就是直接return,不去更新子区间的sum,当下次需要用到子区间的值的时候再更新,从而避免了很多无用的操作

结构体定义:

struct node{
   ll lazy,pre;    //lazy代表懒标记,pre代表区间和
   int l,r;        //区间边界
}edge[maxn*4];    

建树代码:

void build(int p,int l,int r)
{
    edge[p].l=l,edge[p].r=r;
    if(l == r){
        edge[p].pre=a[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(p<<1,l,mid);
    build(p<<1|1,mid+1,r);
    edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
}

更新区间代码:
lazy标记主要是用在这里

void change(int p,int x,int y,ll z)
{
    if(edge[p].l >= x && edge[p].r <= y){       //如果区间被覆盖,就更改其值
        edge[p].lazy+=z;
        edge[p].pre += z*(ll)(edge[p].r-edge[p].l+1);
        return ;
    }
    spread(p);       //区间不被覆盖,下放lazy标记,此时这个区间的子区间并未更新
    int mid=(edge[p].l+edge[p].r)>>1;
    if(x <= mid)
        change(p<<1,x,y,z);     //如果要修改的区间覆盖了左儿子,更新左儿子
    if(mid <y)      //覆盖了右儿子,更新右儿子
        change(p<<1|1,x,y,z);
    edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;   //维护值=左儿子+右儿子
    return ;
}

在这里当区间被覆盖时,更新过后就return了,而不是继续更新子区间,这正是lazy标记思想。
什么时候再更新子节点的值呢?
当区间不被覆盖时,要访问子区间了,这时候需要下放lazy标记给子区间,并更新edge[i].pre的值和lazy。

void spread(int p)
{
    if(edge[p].lazy){
        edge[p<<1].lazy+=edge[p].lazy;
        edge[p<<1|1].lazy+=edge[p].lazy;
        edge[p<<1].pre+=edge[p].lazy*(ll)(edge[p<<1].r-edge[p<<1].l+1);
        edge[p<<1|1].pre+=edge[p].lazy*(ll)(edge[p<<1|1].r-edge[p<<1|1].l+1);
        edge[p].lazy=0;     //lazy下放后赋值为0
    }
}

下面是求区间和的代码:

void ask(int p,ll x,ll y)
{
    if(edge[p].l >= x && edge[p].r <=y){     //如果区间完全被覆盖,直接加上区间和
       ans+=edge[p].pre;
       return ;
    }
    spread(p);          //没被覆盖的仍然下放标记
    int mid = (edge[p].l+edge[p].r)>>1;
    if(x <= mid)
        ask(p<<1,x,y);
    if(mid < y)
        ask(p<<1|1,x,y);
}

下面是AC代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
#define memset(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 0x3f3f3f3f
#define mod 1000000007
const int maxn=1e6+10;

ll a[maxn];
struct node{
   ll lazy,pre;
   int l,r;
}edge[maxn*4];
ll ans;

void build(int p,int l,int r)
{
    edge[p].l=l,edge[p].r=r;
    if(l == r){
        edge[p].pre=a[l];
        return ;
    }
    int mid=(l+r)>>1;
    build(p<<1,l,mid);
    build(p<<1|1,mid+1,r);
    edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
}
void spread(int p)
{
    if(edge[p].lazy){
        edge[p<<1].lazy+=edge[p].lazy;
        edge[p<<1|1].lazy+=edge[p].lazy;
        edge[p<<1].pre+=edge[p].lazy*(ll)(edge[p<<1].r-edge[p<<1].l+1);
        edge[p<<1|1].pre+=edge[p].lazy*(ll)(edge[p<<1|1].r-edge[p<<1|1].l+1);
        edge[p].lazy=0;
    }
}
void change(int p,int x,int y,ll z)
{
    if(edge[p].l >= x && edge[p].r <= y){
        edge[p].lazy+=z;
        edge[p].pre += z*(ll)(edge[p].r-edge[p].l+1);
        return ;
    }
    spread(p);
    int mid=(edge[p].l+edge[p].r)>>1;
    if(x <= mid)
        change(p<<1,x,y,z);
    if(mid <y)
        change(p<<1|1,x,y,z);
    edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
    return ;
}
void ask(int p,ll x,ll y)
{
    if(edge[p].l >= x && edge[p].r <=y){
       ans+=edge[p].pre;
       return ;
    }
    spread(p);
    int mid = (edge[p].l+edge[p].r)>>1;
    if(x <= mid)
        ask(p<<1,x,y);
    if(mid < y)
        ask(p<<1|1,x,y);
}
int main()
{
    int n,m,op,x,y;
    ll k;
    scanf("%d %d",&n,&m);
    for(int i=1;i<=n;i++){
        scanf("%lld",&a[i]);
    }
    build(1,1,n);

    for(int i=1;i<=m;i++){
        scanf("%d",&op);
        ans=0;
        if(op == 1){
            scanf("%d %d %lld",&x,&y,&k);
            change(1,x,y,k);
        }
        else{
            scanf("%d %d",&x,&y);
            ask(1,x,y);
            printf("%lld\n",ans);
        }
    }

    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值