lazy思想:
举个例子,当要给[a,b]区间增加c的时候,发现了一个区间,这个区间被[a,b]区间包括,那么这个区间的sum+=c*(edge[i].r - edge[i].l + 1),并且给这个区间打上lazy标记。如果按正常的做法应该把这个区间的子区间也增加c,然而lazy标记就是直接return,不去更新子区间的sum,当下次需要用到子区间的值的时候再更新,从而避免了很多无用的操作
结构体定义:
struct node{
ll lazy,pre; //lazy代表懒标记,pre代表区间和
int l,r; //区间边界
}edge[maxn*4];
建树代码:
void build(int p,int l,int r)
{
edge[p].l=l,edge[p].r=r;
if(l == r){
edge[p].pre=a[l];
return ;
}
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
}
更新区间代码:
lazy标记主要是用在这里
void change(int p,int x,int y,ll z)
{
if(edge[p].l >= x && edge[p].r <= y){ //如果区间被覆盖,就更改其值
edge[p].lazy+=z;
edge[p].pre += z*(ll)(edge[p].r-edge[p].l+1);
return ;
}
spread(p); //区间不被覆盖,下放lazy标记,此时这个区间的子区间并未更新
int mid=(edge[p].l+edge[p].r)>>1;
if(x <= mid)
change(p<<1,x,y,z); //如果要修改的区间覆盖了左儿子,更新左儿子
if(mid <y) //覆盖了右儿子,更新右儿子
change(p<<1|1,x,y,z);
edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre; //维护值=左儿子+右儿子
return ;
}
在这里当区间被覆盖时,更新过后就return了,而不是继续更新子区间,这正是lazy标记思想。
什么时候再更新子节点的值呢?
当区间不被覆盖时,要访问子区间了,这时候需要下放lazy标记给子区间,并更新edge[i].pre的值和lazy。
void spread(int p)
{
if(edge[p].lazy){
edge[p<<1].lazy+=edge[p].lazy;
edge[p<<1|1].lazy+=edge[p].lazy;
edge[p<<1].pre+=edge[p].lazy*(ll)(edge[p<<1].r-edge[p<<1].l+1);
edge[p<<1|1].pre+=edge[p].lazy*(ll)(edge[p<<1|1].r-edge[p<<1|1].l+1);
edge[p].lazy=0; //lazy下放后赋值为0
}
}
下面是求区间和的代码:
void ask(int p,ll x,ll y)
{
if(edge[p].l >= x && edge[p].r <=y){ //如果区间完全被覆盖,直接加上区间和
ans+=edge[p].pre;
return ;
}
spread(p); //没被覆盖的仍然下放标记
int mid = (edge[p].l+edge[p].r)>>1;
if(x <= mid)
ask(p<<1,x,y);
if(mid < y)
ask(p<<1|1,x,y);
}
下面是AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#include<vector>
#include<algorithm>
#include<map>
using namespace std;
#define memset(a,b) memset(a,b,sizeof(a))
#define ll long long
#define inf 0x3f3f3f3f
#define mod 1000000007
const int maxn=1e6+10;
ll a[maxn];
struct node{
ll lazy,pre;
int l,r;
}edge[maxn*4];
ll ans;
void build(int p,int l,int r)
{
edge[p].l=l,edge[p].r=r;
if(l == r){
edge[p].pre=a[l];
return ;
}
int mid=(l+r)>>1;
build(p<<1,l,mid);
build(p<<1|1,mid+1,r);
edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
}
void spread(int p)
{
if(edge[p].lazy){
edge[p<<1].lazy+=edge[p].lazy;
edge[p<<1|1].lazy+=edge[p].lazy;
edge[p<<1].pre+=edge[p].lazy*(ll)(edge[p<<1].r-edge[p<<1].l+1);
edge[p<<1|1].pre+=edge[p].lazy*(ll)(edge[p<<1|1].r-edge[p<<1|1].l+1);
edge[p].lazy=0;
}
}
void change(int p,int x,int y,ll z)
{
if(edge[p].l >= x && edge[p].r <= y){
edge[p].lazy+=z;
edge[p].pre += z*(ll)(edge[p].r-edge[p].l+1);
return ;
}
spread(p);
int mid=(edge[p].l+edge[p].r)>>1;
if(x <= mid)
change(p<<1,x,y,z);
if(mid <y)
change(p<<1|1,x,y,z);
edge[p].pre=edge[p<<1].pre+edge[p<<1|1].pre;
return ;
}
void ask(int p,ll x,ll y)
{
if(edge[p].l >= x && edge[p].r <=y){
ans+=edge[p].pre;
return ;
}
spread(p);
int mid = (edge[p].l+edge[p].r)>>1;
if(x <= mid)
ask(p<<1,x,y);
if(mid < y)
ask(p<<1|1,x,y);
}
int main()
{
int n,m,op,x,y;
ll k;
scanf("%d %d",&n,&m);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
}
build(1,1,n);
for(int i=1;i<=m;i++){
scanf("%d",&op);
ans=0;
if(op == 1){
scanf("%d %d %lld",&x,&y,&k);
change(1,x,y,k);
}
else{
scanf("%d %d",&x,&y);
ask(1,x,y);
printf("%lld\n",ans);
}
}
return 0;
}