数据结构---优先队列


二叉堆是实现优先队列的基础,上一篇二叉堆博文: 二叉堆

队列的特点是先进先出(FIFO)。
优先队列不再遵循先入先出的原则,而是分为两种情况。

  1. 最大优先队列,无论入队顺序如何,都是当前最大的元素优先出队
  2. 最小优先队列,无论入队顺序如何,都是当前最小的元素优先出队

最大优先队列
在这里插入图片描述

实现方式

可以用最大堆来实现最大优先队列,这样的话,每一次入队操作就是堆的插入操作,每一次出队操作就是删除堆顶节点。

入队

入队就是在数组末尾加上入队元素,在调用最大堆上浮函数,把这个数字上浮到合适的位置
在这里插入图片描述
在这里插入图片描述

出队

出队就是把数组第一个元素取出,在把数组末尾的元素填到第一个位置,在调用最大堆下沉函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

二叉堆节点“上浮”和“下沉”的时间复杂度都是O(logn),所以优先队列入队和出队的时间复杂度也是O(logn)!

JAVA实现

package dataStructure.myPriorityQueue;

import java.util.Arrays;

//最大优先队列
public class priorityQueue {
    private int size;
    private int[] array;

    public priorityQueue() {
        //优先队列初始长度为32
        array = new int[32];
    }

    /**
     * 上浮(入队)
     */
    private void upAdjust(){
        //都是从数组最后一个位置(size-1;)入队
        int childIndex = size-1;
        int parentIndex = (childIndex-1)/2;
        // temp 保存插入的叶子节点值,用于最后的赋值
        int temp = array[childIndex];
        //最大堆(最大优先队列)
        while (childIndex>0&&temp>array[parentIndex]){
            array[childIndex] = array[parentIndex];
            childIndex = parentIndex;
            parentIndex = parentIndex/2;
        }
        array[childIndex] = temp;
    }

    /**
     * 下沉(出队)
     */
    private void downAdjust(){
        // temp 保存父节点的值,用于最后的赋值
        //删除的是根节点(最大值出队)
        int parentIndex = 0;
        int temp = array[parentIndex];
        //左孩子下标
        int childIndex = 1;
        while (childIndex<size){
            // 如果有右孩子,且右孩子大于左孩子的值,则定位到右孩子
            //需要从左右孩子找最大的(最大堆)
            if(childIndex+1<size&&array[childIndex+1]>array[childIndex]){
                childIndex++;
            }
            // 如果父节点大于任何一个孩子的值,直接跳出(已经是最大堆了)
            if(temp>=array[childIndex]){
                break;
            }
            array[parentIndex] = array[childIndex];
            //再向下找
            parentIndex = childIndex;
            childIndex = 2*childIndex+1;
        }
        array[parentIndex] = temp;
    }
    /**
     * 队列扩容
     */
    private void resize(){
        int newSize = this.size*2;
        this.array = Arrays.copyOf(this.array,newSize);
    }

    /**
     * 入队
     * @param key   入队的值
     */
    public void enQueue(int key){
        if(size>=array.length){
            resize();
        }
        //数组最后一个位置入队
        array[size++] = key;
        //再进行堆上浮
        upAdjust();
    }

    public int deQueue() throws Exception{
        if (size<0){
            throw new Exception("空的最大优先队列,出队失败");
        }
        //获取堆顶元素
        int head = array[0];
        //把最后一个元素移动到堆顶
        array[0] = array[--size];
        //堆下沉
        downAdjust();
        return head;
    }

    public static void main(String[] args) throws Exception {
        priorityQueue priorityQueue = new priorityQueue();
        priorityQueue.enQueue(3);
        priorityQueue.enQueue(5);
        priorityQueue.enQueue(10);
        priorityQueue.enQueue(10);
        priorityQueue.enQueue(2);
        priorityQueue.enQueue(7);
        System.out.println("最大优先队列出队:"+priorityQueue.deQueue());
    }

}

在这里插入图片描述

总结

优先队列分为最大优先队列和最小优先队列。

  1. 在最大优先队列中,无论入队顺序如何,当前最大的元素都会优先出队,这是基于最大堆实现的。
  2. 在最小优先队列中,无论入队顺序如何,当前最小的元素都会优先出队,这是基于最小堆实现的

二叉堆是一种特殊的完全二叉树,分为最大堆和最小堆。

  1. 在最大堆中,任何一个父节点的值,都大于或等于它左、右孩子节点的值。
  2. 在最小堆中,任何一个父节点的值,都小于或等于它左、右孩子节点的值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值