题目
解题思路
** 深度优先搜索 **
可以使用深度优先搜索合并两个二叉树。从根节点开始同时遍历两个二叉树,并将对应的节点进行合并。
两个二叉树的对应节点可能存在以下三种情况,对于每种情况使用不同的合并方式。
-
如果两个二叉树的对应节点都为空,则合并后的二叉树的对应节点也为空;
-
如果两个二叉树的对应节点只有一个为空,则合并后的二叉树的对应节点为其中的非空节点;
-
如果两个二叉树的对应节点都不为空,则合并后的二叉树的对应节点的值为两个二叉树的对应节点的值之和,此时需要显性合并两个节点。
对一个节点进行合并之后,还要对该节点的左右子树分别进行合并。这是一个递归的过程。
注意点
开始想的是将所有的情况都列举出来,实际上是想多了,关键就在于什么时候定义新的root节点。root节点要定影在base case(返回条件之后),当root1为null,返回root2;当root2为null时,返回root1。之后定义新的root节点,将root.val设置为root1.val与root2.val的和。
代码
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode() {}
* TreeNode(int val) { this.val = val; }
* TreeNode(int val, TreeNode left, TreeNode right) {
* this.val = val;
* this.left = left;
* this.right = right;
* }
* }
*/
class Solution {
// public static TreeNode merge()
public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
if(root1==null){
return root2;
}
if(root2==null){
return root1;
}
TreeNode root=new TreeNode(root1.val+root2.val);
root.left=mergeTrees(root1.left,root2.left);
root.right=mergeTrees(root1.right,root2.right);
return root;
}
}
-
时间复杂度:O(\min(m,n))O(min(m,n)),其中 mm 和 nn 分别是两个二叉树的节点个数。对两个二叉树同时进行深度优先搜索,只有当两个二叉树中的对应节点都不为空时才会对该节点进行显性合并操作,因此被访问到的节点数不会超过较小的二叉树的节点数。
-
空间复杂度:O(\min(m,n))O(min(m,n)),其中 mm 和 nn 分别是两个二叉树的节点个数。空间复杂度取决于递归调用的层数,递归调用的层数不会超过较小的二叉树的最大高度,最坏情况下,二叉树的高度等于节点数。