pytorch之DP

最近在学习mmdetection的分布式数据并行,其中涉及到pytorch的DP和DDP,到网上搜集了很多资料,通过这篇文章来总结一下。

一、并行

随着网络模型越来越大,并行技术越来越必不可少。这篇文章中记录了我们为什么需要并行技术,以及对并行技术做了简要的总结:常见的分布式并行策略
简而言之,并行技术可以加快训练速度以及解决显存不足的问题。
今天我们主要讨论的数据并行。

二、DataParallel

pytorch提供的DataParallel是实现数据并行最简单的方式,只需要一行代码就可以实现数据并行。

model = nn.DataParallel(model)

这篇文章中清晰的展示了DP的运行流程:单机多卡数据并行-DataParallel(DP)

这篇文章中对DP的代码进行了分析:PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析

简单来说,DP通过多线程的方式实现数据并行。
在将数据输入到模型之前,需要将数据和模型加载到gpu。

device = torch.device('cuda')
model = model.to(device)
data = data.to(device), 
label = label.to( device)

当执行下面代码时,进入DP的forward函数

output = model(data)

scatter负责将模型从主gpu分发到其他gpu,每个gpu上都是完整的模型
replicate负责将数据分发的其他gpu,一个batch的数据会平均分发
parallel_apply负责前向传播,这里会通过多线程进行
gather负责收集所有gpu上的输出

作为最简单的数据并行方式,DP的缺点显而易见,这篇文章中记录了DP的缺点:Pytorch的nn.DataParallel
主要的缺点时负载不均衡的问题,通过上面的流程我们知道,主gpu会对输入进行汇总、计算Loss、对梯度进行汇总、更新权重。
汇总其他gpu的数据、计算过程中的累加、中间结果的产生都会造成主gpu占用的显存高于其他gpu。

另外多线程受限于全局解释器锁主要用来提高IO密集型程序的性能,对计算密集型程序并没有多少帮助。

在文章Pytorch的nn.DataParallel中作者将优化器也使用DP进行了包装,由此引发了计算Loss的问题也很有趣。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值