pytorch之DP

最近在学习mmdetection的分布式数据并行,其中涉及到pytorch的DP和DDP,到网上搜集了很多资料,通过这篇文章来总结一下。

一、并行

随着网络模型越来越大,并行技术越来越必不可少。这篇文章中记录了我们为什么需要并行技术,以及对并行技术做了简要的总结:常见的分布式并行策略
简而言之,并行技术可以加快训练速度以及解决显存不足的问题。
今天我们主要讨论的数据并行。

二、DataParallel

pytorch提供的DataParallel是实现数据并行最简单的方式,只需要一行代码就可以实现数据并行。

model = nn.DataParallel(model)

这篇文章中清晰的展示了DP的运行流程:单机多卡数据并行-DataParallel(DP)

这篇文章中对DP的代码进行了分析:PyTorch 源码解读之 DP & DDP:模型并行和分布式训练解析

简单来说,DP通过多线程的方式实现数据并行。
在将数据输入到模型之前,需要将数据和模型加载到gpu。

device = torch.device('cuda')
model = model.to(device)
data = data.to(device), 
label = label.to( device)

当执行下面代码时,进入DP的forward函数

output = model(data)

scatter负责将模型从主gpu分发到其他gpu,每个gpu上都是完整的模型
replicate负责将数据分发的其他gpu,一个batch的数据会平均分发
parallel_apply负责前向传播,这里会通过多线程进行
gather负责收集所有gpu上的输出

作为最简单的数据并行方式,DP的缺点显而易见,这篇文章中记录了DP的缺点:Pytorch的nn.DataParallel
主要的缺点时负载不均衡的问题,通过上面的流程我们知道,主gpu会对输入进行汇总、计算Loss、对梯度进行汇总、更新权重。
汇总其他gpu的数据、计算过程中的累加、中间结果的产生都会造成主gpu占用的显存高于其他gpu。

另外多线程受限于全局解释器锁主要用来提高IO密集型程序的性能,对计算密集型程序并没有多少帮助。

在文章Pytorch的nn.DataParallel中作者将优化器也使用DP进行了包装,由此引发了计算Loss的问题也很有趣。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
下面是一个简单的 PyTorch 分布式数据并行神经网络代码示例: ```python import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torch.distributed as dist import torchvision.datasets as datasets import torchvision.transforms as transforms # 初始化分布式进程 dist.init_process_group(backend='nccl', init_method='env://') # 定义神经网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=3, padding=1) self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1) self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1) self.fc1 = nn.Linear(256 * 4 * 4, 512) self.fc2 = nn.Linear(512, 10) def forward(self, x): x = F.relu(self.conv1(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv2(x)) x = F.max_pool2d(x, 2) x = F.relu(self.conv3(x)) x = F.max_pool2d(x, 2) x = x.view(-1, 256 * 4 * 4) x = F.relu(self.fc1(x)) x = self.fc2(x) return x # 定义训练函数 def train(rank, world_size): # 加载数据 train_set = datasets.CIFAR10(root='./data', train=True, download=True, transform=transforms.ToTensor()) train_sampler = torch.utils.data.distributed.DistributedSampler(train_set, num_replicas=world_size, rank=rank) train_loader = torch.utils.data.DataLoader(train_set, batch_size=64, sampler=train_sampler) # 初始化模型、优化器和损失函数 model = Net() model = nn.parallel.DistributedDataParallel(model, device_ids=[rank]) optimizer = optim.SGD(model.parameters(), lr=0.01) criterion = nn.CrossEntropyLoss() # 训练循环 for epoch in range(10): train_loss = 0.0 for data, target in train_loader: optimizer.zero_grad() output = model(data) loss = criterion(output, target) loss.backward() optimizer.step() train_loss += loss.item() * data.size(0) train_loss /= len(train_loader.dataset) if rank == 0: print('Epoch: {}, Train Loss: {:.6f}'.format(epoch+1, train_loss)) # 获取本地进程信息 rank = dist.get_rank() world_size = dist.get_world_size() # 开始训练 train(rank, world_size) # 清理分布式进程 dist.destroy_process_group() ``` 在这个示例中,我们定义了一个简单的卷积神经网络模型 `Net`,并在 `train` 函数中使用 PyTorch 的分布式数据并行来训练模型。我们使用 CIFAR10 数据集进行训练,并使用 SGD 优化器和交叉熵损失函数。我们使用 `DistributedSampler` 和 `DataLoader` 来加载数据,并使用 `DistributedDataParallel` 来并行化模型。最后,我们在每个 epoch 结束时打印训练损失,并在进程 0 上输出。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值