题目描述
很少有人知道奶牛爱吃苹果。农夫约翰的农场上有两棵苹果树(编号为 1 和 2),每一棵树上都长满了苹果。奶牛贝茜无法摘下树上的苹果,所以她只能等待苹果从树上落下。但是,由于苹果掉到地上会摔烂,贝茜必须在半空中接住苹果(没有人爱吃摔烂的苹果)。贝茜吃东西很快,所以她接到苹果后仅用几秒钟就能吃完。
每一分钟,两棵苹果树其中的一棵会掉落一个苹果。贝茜已经过了足够的训练,只要站在树下就一定能接住这棵树上掉落的苹果。同时,贝茜能够在两棵树之间快速移动(移动时间远少于 1 分钟),因此当苹果掉落时,她必定站在两棵树其中的一棵下面。此外,奶牛不愿意不停地往返于两棵树之间,因此会错过一些苹果。
苹果每分钟掉落一个,共 T(1<=T<=1000)分钟,贝茜最多愿意移动 W(1<=W<=30)次。现给出每分钟掉落苹果的树的编号,要求判定贝茜能够接住的最多苹果数。开始时贝茜在 1 号树下。
输入
第 1 行:由空格隔开的两个整数:T 和 W
第 2..T+1 行:1 或 2(每分钟掉落苹果的树的编号)
输出
第一行:在贝茜移动次数不超过 W 的前提下她能接到的最多苹果数
样例输入
7 2
2
1
1
2
2
1
1
样例输出
6
数据范围限制
如题
【样例说明】
7 分钟内共掉落 7 个苹果——第 1 个从第 2 棵树上掉落,接下来的 2 个苹果从第 1 棵树上掉落,再接下来的 2 个从第 2 棵树上掉落,最后 2 个从第 1 棵树上掉落。
贝茜不移动直到接到从第 1 棵树上掉落的两个苹果,然后移动到第 2 棵树下,直到接到从第 2 棵树上掉落的两个苹果,最后移动到第 1 棵树下,接住最后两个从第 1 棵树上掉落的苹果。这样贝茜共接住 6 个苹果。
题解:
应该是简单的dp,
数组dp[i][j],表示:当第i个苹果下落的时候已经移动了j步时最多能接多少苹果
当一个苹果下落时有两种策略: 1.不移动 2.移动
于是,状态转移方程:dp[i][j]=max(dp[i-1][j],dp[i-1][j-1])+[a[i]==j%2+1](这是判断这个苹果是否能接住)
因为那只牛开始处在1的位置,所以dp[i][0]=dp[i-1][0]+[a[i]==1] (这表示a[i]==1时返回1,否则为0)
代码:
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
using namespace std;
const int MAXN=1005;
int t,w,dp[MAXN][35];
int a[MAXN],m;
int main(){
// freopen("bcatch.in","r",stdin);
// freopen("bcatch.out","w",stdout);
cin>>t>>w;
for(int i=1;i<=t;i++)
scanf("%d",&a[i]);
for(int i=1;i<=t;i++){
dp[i][0]=(a[i]==1)+dp[i-1][0];
for(int j=1;j<=w;j++)
dp[i][j]=max(dp[i-1][j-1],dp[i-1][j])+(a[i]==j%2+1);
}
cout<<dp[t][w];
return 0;
}