单细胞分析
文章平均质量分 69
爱吃鱼子酱
这个作者很懒,什么都没留下…
展开
-
GAN和AE为什么总会被人一起讨论
AE和GAN在产生图片上十分相似,AE是通过Decoder隐变量产生新数据。而GAN则是通过Generator产生随机图像。AE是通过对比生成数据和原始数据之间的质量差异,来优化隐变量。GAN则是通过判别器对比真实数据和生成数据之间的质量,使两种图片能产生相似的结果。AE,中间的隐变量是由输入数据Encode产生的,导致隐变量Encode和原数据对应性更强,生成数据也就更加规则。但是这样会导致数据是点对点监督的,也就是说,尽量保证每个点都一样,也就会导致全局信息获取不够全面。全局信息弱,局部信息强。...原创 2022-07-05 17:54:33 · 1398 阅读 · 0 评论 -
图卷积神经网络GCN中的关键公式推导---干货
1. 首先,定义图拉普拉斯矩阵 , 这里L可以换成任何其他形式,比如被正则化的拉普拉斯矩阵。2. 然后,对图进行卷积操作: 经过上述操作,可获得图上的卷积操作 3. 对图卷积公式进行简化求解,即求解。 4. 共享参数,即令,没啥道理,就是效果好才这样操作。最后公式可以整理为5. 最后,就可以训练卷积核了本文是整理b站一个大佬的视频笔记,从头到尾学习了一遍,感觉讲的很透彻,这里附上链接,感兴趣可以听一听:图卷积神经网络(GCN)的数学原理详解——谱图理论和傅立叶变换初探_哔哩哔哩_bilibi原创 2022-06-28 22:57:22 · 2236 阅读 · 0 评论 -
变分自动编码器Variational Auto-Encoding(VAE)基本原理和理解,附上python代码(包含中文注释)
VAE模型原理、解释、损失函数、python实现(包含中文注释)原创 2022-06-28 12:04:23 · 4338 阅读 · 3 评论 -
玩转单细胞高级分析 | 细胞通讯分析篇
细胞通讯分析常用方法转载 2022-06-01 20:13:15 · 2344 阅读 · 0 评论 -
基因表达真的是正态分布吗?
TCGA数据,或者基因表达数据,真的是正态分布吗?下面进行一些实验讨论转载 2022-06-01 16:04:48 · 932 阅读 · 0 评论 -
GSEA原理及一些理解
生信宝典之前总结了一篇关于GSEA富集分析的推文——《GSEA富集分析 - 界面操作》,介绍了GSEA的定义、GSEA原理、GSEA分析、Leading-edge分析等,是全网最流行的原理+操作兼备教程,不太了解的朋友可以点击阅读先理解下概念 (为了完整性,下面也会摘录一部分)。GSEA案例解析介绍GSEA分析之前,我们先看一篇Cell文章(https://sci-hub.tw/10.1016/j.cell.2016.11.033)的一个插图 (SCI-HUB客户端(文献神器V4.0)——下转载 2022-05-30 16:28:21 · 2137 阅读 · 0 评论 -
Harmonizome数据库 – 一个集合多种pathway(or other)的网站
pathway 数据库,Harmonizome and reactome原创 2022-02-25 09:39:59 · 2746 阅读 · 0 评论 -
R语言分析单细胞数据Day2——UMAP可视化(二)
执行UMAP可视化需要运行PCA降维,PCA降维之前需要缩放数据到一定规模!接上一篇结果:预处理后的数据R语言分析单细胞数据Day1——下载Seurat包并进行预处理(一)Task.1 缩放数据all.genes <- rownames(Seurat_Day0_fit_norm) #Seurat_Day0_fit_norm这个是上一节的名字,换成自己的项目名即可Seurat_Day0_fit_norm <- ScaleData(Seurat_Day0_fit_norm, featur.原创 2022-01-20 17:09:19 · 7806 阅读 · 3 评论 -
R语言分析单细胞数据Day1——下载Seurat包并进行预处理(一)
Task.1 安装Seurat,准备处理single cell data安装Seurat时,只能安装3.2.3以下的版本,太高就不兼容!install.packages('remotes') %安装过可以省略remotes:: install_version("Seurat", version = "3.2.3")% 安装不上可以更新R版本或者安装附属包Task.2 加载Seurat包并导入数据library(Seurat)% 这里可以设置你的路径,三个文件(mtx数据、行名和列名)都需要原创 2022-01-20 15:58:12 · 13814 阅读 · 1 评论