题目链接
一道简单的题,被我给整复杂了。欧拉回路。
题目的要求是,给出N个点,M条边,并且呢,M条边要经过两次,一次是从u到v,那么下一次就不能走u到v了,只允许走v到u了。
那么,不就是相当于题目把欧拉回路的图都给搭建好了嘛!于是乎,直接跑,欧拉回路的模板了。
然后呢,因为每条边都会用,且仅会被使用一次,我就想到了Dinic的cur[]优化,于是呢,我每次跑完就是head[u] = edge[head[u]].nex。做一个当前弧的优化。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
//#include <unordered_map>
//#include <unordered_set>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f
//#define INF 10000007.
#define eps 1e-7
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 1e4 + 7, maxM = 5e4 + 7;
int N, M;
struct LSQXX //链式前向星
{
int head[maxN], cnt;
struct Eddge
{
int nex, to;
Eddge(int a=-1, int b=0):nex(a), to(b) {}
}edge[maxM << 1];
inline void addEddge(int u, int v)
{
edge[cnt] = Eddge(head[u], v);
head[u] = cnt++;
}
inline void _add(int u, int v) { addEddge(u, v); addEddge(v, u); }
int Stap[maxM << 1], Stop;
void dfs(int u)
{
int v;
while(~head[u])
{
v = edge[head[u]].to;
head[u] = edge[head[u]].nex;
dfs(v);
}
Stap[++Stop] = u;
}
inline void clear()
{
cnt = 0; Stop = 0;
for(int i=1; i<=N; i++) head[i] = -1;
}
} E;
struct Graph
{
int u, v;
Graph(int a=0, int b=0):u(a), v(b) {}
inline void In_Put() { scanf("%d%d", &u, &v); }
} G[maxM];
int main()
{
scanf("%d%d", &N, &M);
E.clear();
for(int i=1; i<=M; i++) { G[i].In_Put(); E._add(G[i].u, G[i].v); }
E.dfs(1);
for(int i=E.Stop; i; i--) printf("%d\n", E.Stap[i]);
return 0;
}