乔乔和牛牛逛超市【CCF202006-5】


  简单的说,就是我们想知道取其中的一些点,使得他们之间满足题目中给出的要求,然后问这样的集合的权值的最大值。

  将问题这样展开之后,实际上就是一个最大权闭合子图问题了,什么是最大权闭合子图?就是求一个集合,集合的所有的点的出边所指向的点也在集合内,求这样的集合的点的权值和的最大。

  于是,这个问题就是一个网络流求最大权闭合子图问题了。

  分两种状态考虑。

情况1:1 x y

  那么,我们让y \rightarrow x,意思是我们要取x的话,就必须取y。

情况2:2 x y

  我们让y' \rightarrow x,指的是要取y的端点,就需要取x。

于是,就可以建图跑了。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <string>
#include <cstring>
#include <algorithm>
#include <limits>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <bitset>
#define lowbit(x) ( x&(-x) )
#define pi 3.141592653589793
#define e 2.718281828459045
#define INF 0x3f3f3f3f3f3f3f3f
#define HalF (l + r)>>1
#define lsn rt<<1
#define rsn rt<<1|1
#define Lson lsn, l, mid
#define Rson rsn, mid+1, r
#define QL Lson, ql, qr
#define QR Rson, ql, qr
#define myself rt, l, r
#define pii pair<int, int>
#define MP(a, b) make_pair(a, b)
using namespace std;
typedef unsigned long long ull;
typedef unsigned int uit;
typedef long long ll;
const int maxN = 2e4 + 7, maxM = 2.4e5 + 7;
int N, M;
int L[maxN], R[maxN];
ll A[maxN], B[maxN], C[maxN], val[maxN][2];
int fu_2a_b[maxN], pos[maxN][2];
namespace Graph
{
    int head[maxN], cnt;
    struct Eddge
    {
        int nex, to; ll flow;
        Eddge(int a=-1, int b=0, ll c=0):nex(a), to(b), flow(c) {}
    } edge[maxM];
    inline void addEddge(int u, int v, ll w)
    {
        edge[cnt] = Eddge(head[u], v, w);
        head[u] = cnt++;
    }
    inline void _add(int u, int v, ll w) { addEddge(u, v, w); addEddge(v, u, 0); }
    inline void init()
    {
        cnt = 0;
        for(int i=0; i<=(N << 1) + 1; i++) head[i] = -1;
    }
};
namespace Dinic
{
    using namespace Graph;
    int S, T, cur[maxN], node;
    int deep[maxN], que[maxN], top, tail;
    inline bool bfs()
    {
        for(int i=0; i<=node; i++) deep[i] = 0;
        top = tail = 0; que[tail++] = S; deep[S] = 1;
        while(top < tail)
        {
            int u = que[top++];
            for(int i=head[u], v; ~i; i=edge[i].nex)
            {
                v = edge[i].to; ll f = edge[i].flow;
                if(!deep[v] && f)
                {
                    deep[v] = deep[u] + 1;
                    que[tail++] = v;
                }
            }
        }
        return deep[T];
    }
    ll dfs(int u, ll dist)
    {
        if(u == T) return dist;
        for(int &i = cur[u], v; ~i; i=edge[i].nex)
        {
            v = edge[i].to;
            ll f = edge[i].flow;
            if(deep[v] == deep[u] + 1 && f)
            {
                ll flow = dfs(v, min(f, dist));
                if(flow)
                {
                    edge[i].flow -= flow;
                    edge[i ^ 1].flow += flow;
                    return flow;
                }
            }
        }
        return 0;
    }
    inline ll Max_Flow()
    {
        ll ans = 0, tmp;
        while(bfs())
        {
            for(int i=0; i<=node; i++) cur[i] = head[i];
            while((tmp = dfs(S, INF))) ans += tmp;
        }
        return ans;
    }
};
using namespace Dinic;
inline ll Slope(ll a, ll b, ll c, ll x) { return a * x * x + b * x + c; }
int main()
{
    scanf("%d%d", &N, &M);
    init();
    Dinic::S = 0; Dinic::T = (N << 1) + 1;
    ll ans = 0;
    for(int i=1, c[2]; i<=N; i++)
    {
        scanf("%d%d%lld%lld%lld", &L[i], &R[i], &A[i], &B[i], &C[i]);
        fu_2a_b[i] = (int)round(-1. * B[i] / (2. * A[i]));
        c[0] = L[i] + 1;
        c[1] = R[i] - 1;
        if(c[0] <= c[1])
        {
            pos[i][0] = fu_2a_b[i];
            if(A[i] == 0)
            {
                if(Slope(A[i], B[i], C[i], c[0]) > Slope(A[i], B[i], C[i], c[1])) pos[i][0] = c[0];
                else pos[i][0] = c[1];
            }
            else if(A[i] < 0)
            {
                if(fu_2a_b[i] >= c[0] && fu_2a_b[i] <= c[1]) pos[i][0] = fu_2a_b[i];
                else
                {
                    if(Slope(A[i], B[i], C[i], c[0]) > Slope(A[i], B[i], C[i], c[1])) pos[i][0] = c[0];
                    else pos[i][0] = c[1];
                }
            }
            else
            {
                if(Slope(A[i], B[i], C[i], c[0]) > Slope(A[i], B[i], C[i], c[1])) pos[i][0] = c[0];
                else pos[i][0] = c[1];
            }
            val[i][0] = Slope(A[i], B[i], C[i], pos[i][0]);
            if(val[i][0] > 0)
            {
                _add(S, (i << 1) - 1, val[i][0]);
                ans += val[i][0];
            }
            else if(val[i][0] < 0) _add((i << 1) - 1, T, -val[i][0]);
        }
        c[0]--;
        c[1]++;
        if(Slope(A[i], B[i], C[i], c[0]) > Slope(A[i], B[i], C[i], c[1])) pos[i][1] = c[0];
        else pos[i][1] = c[1];
        val[i][1] = Slope(A[i], B[i], C[i], pos[i][1]);
        ll tmp = val[i][1] - val[i][0];
        if(tmp > 0)
        {
            _add(S, (i << 1), tmp);
            ans += tmp;
        }
        else if(tmp < 0) _add((i << 1), T, -tmp);
        _add((i << 1), (i << 1) - 1, INF);
    }
    for(int i = 1, op, x, y; i <= M; i++)
    {
        scanf("%d%d%d", &op, &x, &y);
        if(op == 1)
        {
            _add((y << 1) - 1, (x << 1) - 1, INF);
        }
        else
        {
            _add((y << 1), (x << 1) - 1, INF);
        }
    }
    Dinic::node = Dinic::T;
    printf("%lld\n", ans - Max_Flow());
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Wuliwuliii

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值