F.pad() 函数详解

本文详细介绍了PyTorch的F.pad()函数,用于在Tensor的各个维度上进行填充。通过设置不同的参数,可以实现一维、二维、三维填充,并通过mode参数选择填充方式,如constant、reflect、replicate。此外,还给出了多个实例来演示如何使用该函数进行不同维度的填充操作,帮助理解其工作原理和实际用途。
摘要由CSDN通过智能技术生成

  F.pad() 是pytorch 内置的 tensor 扩充函数,便于对数据集图像或中间层特征进行维度扩充,官方定义如下:

torch.nn.functional.pad (input, pad, mode=‘constant’, value=0)

  • input:需要扩充的 tensor,可以是图像数据,亦或是特征矩阵数据;
  • pad:扩充维度,预先定义某维度上的扩充参数;
  • mode:扩充方法,有三种模式,分别表示常量(constant),反射(reflect),复制(replicate);
  • value:扩充时指定补充值,value只在mode=constant有效,即使用value填充在扩充出的新维度位置,而在reflect和replicate模式下,value不可赋值;
一维度填充

参数pad只定义两个参数,表示只对输入矩阵的最后一个维度进行扩充

t4d = torch.empty(1, 3,5 ,3)
print(t4d.size())  # torch.Size([1, 3, 5, 3])
p1d = (1, 2)  # (左边填充数, 右边填充数)
t1 = F.pad(t4d, p1d, 'constant', 1)
print(t1.size())  # torch.Size([1, 3, 5, 6])
二维度填充

参数pad定义了四个参数,表示对输入矩阵的后两个维度进行扩充

p2d = (1, 2, 3, 4)  # (左边填充数, 右边填充数, 上边填充数, 下边填充数)
t2 = F.pad(t4d, p2d, 'constant', 2)
print(t2.size())  # torch.Size([1, 3, 12, 6])
三维度填充

参数pad定义了六个参数,表示对输入矩阵的后三个维度进行扩充

p3d = (1, 2, 3, 4, 5, 6)
t3 = F.pad(t4d, p3d, 'constant', 3)
print(t3.size())  # torch.Size([1, 14, 12, 6])
小结

  简单用一个图来表述F.pad()的应用。

【转载自】:F.pad 的理解

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值