PyTorch F.pad()

调包侠的自我修养。

国际惯例引用

import torch
import torch.nn.functional as F

先看定义

def pad(input, pad, mode='constant', value=0):

F.pad函数封装了不同mode的其他pad函数

torch.nn.ConstantPad(涵盖了torch.nn.ZeroPad)
torch.nn.ReflectiontPad
torch.nn.ReplicationPad

以及一个独特的pad能力

F._pad_circular(input,padding)

其中input的形状至少是3D张量,因为前2维必须是batch,C_in。然后根据需求接上H,[W,D]。
参数pad是一个元组,成对地控制H,[W,D]上的pad。

1. mode=‘constant’

此时 value为要填充的任意值。
注意,如果mode!=‘constant’,则assert(value==0)

constant pad的能力完全覆盖了zeropad,zeropad只是它value=0时的一个特殊情况。

2. mode=‘reflect’

a=torch.Tensor([1,2,3,4,5,6,7,8]).view(1,1,-1)
b=F.pad(input=a,pad=(2,3),mode='reflect')
print(b)

返回结果

tensor([[[3., 2., 1., 2., 3., 4., 5., 6., 7., 8., 7., 6., 5.]]])

所谓relect就是以左右边界为起点,进行镜像填充。
因为我们pad=(2,3)
左边填充了2位,右边填充了3位。
左边多出来[3,2],右边多出来[7,6,5]。

3.mode=‘replicate’

a=torch.Tensor([1,2,3,4,5,6,7,8]).view(1,1,-1)
b=F.pad(input=a,pad=(2,3),mode='replicate')
print(b)

返回结果

tensor([[[1., 1., 1., 2., 3., 4., 5., 6., 7., 8., 8., 8., 8.]]])

replicate如字面意思。将边界点的值重复若干次。

4.mode=‘circular’

a=torch.Tensor([1,2,3,4,5,6,7,8]).view(1,1,-1)
b=F.pad(input=a,pad=(2,3),mode='circular')
print(b)

返回结果

tensor([[[7., 8., 1., 2., 3., 4., 5., 6., 7., 8., 1., 2., 3.]]])

circular也如字面意思,以自身为模式串,循环呈现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值