勘误:
1基归一化(||x1||=1):不是指基各系数和为1。而是该向量长度为1
2内积:用坐标轴表示的话,是向量距离,即一个矢量在一个方向上的投影长度
一、mp算法(结合坐标轴分析)
1:二维坐标系
假设超完备字典行数为2时,可转化为二维坐标系参考。
上图得:内积:1>3>2,则基取b1。
系数写在参数x中
矩阵x=[ λ1,0,0]’
λ1被放置到第一个元素的位置是因为这个贡献系数来自于A中的第一个基b1.
向量可加性得:Y=λ1b1+e1,
残差e=Y-λ1b1
残差如下图:与b1相正交
现在要在其余的原子b2或者b3中选择出对残差贡献最大的,
以此类推,通过计算每个基对残差的贡献做系数得到x,循环至残差小于某个阈值mp算法结束。
2、三维坐标系
假设超完备字典行数为3时,可转化为三维坐标系参考。
比较内积,λ1>λ2,取基1,则残差为图示e1,替换Y后如下图
迭代同上。
二、OMP算法(结合坐标轴分析)