题意:
给出n个点,并给出t个描述(a,b,c 表示a与b的距离为c),问1到n的最短路径
解法:
学习了最短路dijkstra算法。
dijkstra算法:
1 解决图中单个源点到其它顶点的最短路径。只能解决权值非负(有向图、无向图都可以)
2 Dijkstral只能求出任意点到达源点的最短距离(不能求出任意两点之间的最短距离),同时适用于有向图和无向图,复杂度为O(n^2).
3算法的过程:
①设置顶点集合S并不断的作贪心选择(即遍历出当前点到源点的最短路径)来选择扩充这个集合。一个顶点属于集合S意思是当且仅当从源点到该点的最短路径长度已知
② 初始时,S中仅含有源。设U(第k个点)是G(前k-1个点)的某一个顶点,把从源到U且中间只经过S中的顶点的路(该路通过①过程后已经被确定为最短路,即前k-1个点的最短路)称为从源到U的特殊路径,并用dis数组记录当前每一个顶点所对应的最短特殊路径的长度(即U点到源点的最短长度)
③Dijkstra算法每一次V-S中具有最短特殊长度的顶点u,将u添加到S中,同时对dis数组进行修改。一旦S包含了所有的V中的顶点,dis数组就记录了从源点到其它顶点的最短路径长度。
AC代码:
#include <iostream>
#include <cstring>
using namespace std;
int maps[1010][1010];//maps[i][j]表示i与j两点的最短距离
int dis[1010];//dis[i]表示i到源点1的最短距离
int vis[1010];//标技数组
void dijkstra(int n)
{
int min,k;
min=100000000;
for(int i=1;i<=n;i++) //将已知的maps[1][i]记录到dis中
{
vis[i]=0;
dis[i]=maps[1][i];
}
for(int i=1;i<=n;i++) //遍历顶点U
{
k=0;
min=100000000;
for(int j=1;j<=n;j++) //确定前k-1个顶点的最短路径
{
if(vis[j]==0&&dis[j]<min) //如果该点最短路径没找到
{
min=dis[j];
k=j;
}
}
vis[k]=1; //标记k点已经找到了最短路径
for(int j=1;j<=n;j++) //确定第k个顶点的最短路径
{
if(vis[j]==0&&dis[k]+maps[j][k]<dis[j]) //前k-1个点+第(k-1)到k点的距离<已知的disp[j],说明还有更短的dis[j]
{
dis[j]=dis[k]+maps[j][k];
}
}
}
}
int main()
{
int t,n,w,a,b;
while(cin>>t>>n)
{
memset(maps,0,sizeof(maps));
memset(dis,0,sizeof(dis));
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++) //初始化maps,使每个元素都无穷大
for(int j=1;j<=n;j++)
maps[i][j]=100000000;
for(int i=1;i<=t;i++)
{
cin>>a>>b>>w;
if(w<maps[a][b]) //记录初始给出的maps关系
{
maps[a][b]=w;
maps[b][a]=maps[a][b];
}
}
dijkstra(n);
cout<<dis[n]<<endl;
}
return 0;
}
模板:
#define MAXN 1010
#define INF 0xFFFFFFF
int value[MAXN][MAXN];/*保存的是边权值*/
int dis[MAXN];/*保存源点到任意点之间的最短路*/
int father[MAXN];/*保存i点的父亲节点*/
int vis[MAXN];/*记录哪些顶点已经求过最短路*/
void input(){
int star , end , v;
scanf("%d%d" , &n , &m);
/*初始化value数组*/
for(int i = 1 ; i <= n ; i++){
for(int j = 1; j <= n ; j++)
value[i][j] = INF;
value[i][i] = 0 ;
}
for(int i = 0 ; i < m ; i++){
scanf("%d%d%d" , &star , &end , &v);
if(value[star][end] > v) value[star][end] = value[end][star] = v;/*注意这个地方是处理成无向图还是有向图*/
}
void dijkstra(int s){
memset(vis , 0 , sizeof(vis));
memset(father , 0 , sizeof(father));
/*初始化dis数组*/
for(int i = 1 ; i<= n ; i++)
dis[i] = INF;
dis[s] = 0;
for(int i = 1 ; i <= n ; i++){/*枚举n个顶点*/
int pos;
pos = -1;
for(int j = 1 ; j <= n ;j++){/*找到未加入集合的最短路点*/
if(!vis[j] && (pos == -1 || dis[j] < dis[pos]))
pos = j;
}
vis[pos] = 1;/*把这个点加入最短路径集合*/
for(int j = 1 ; j <= n ; j++){/*更新dis数组*/
if(!vis[j] && (dis[j] > dis[pos] + value[pos][j])){ //找没有求出最短路的点求最短路
dis[j] = dis[pos] + value[pos][j];
father[j] = pos;
}
}
}
}