【ACM之路】5.最短路算法-Dijkstra算法

本文介绍了Dijkstra算法,一种用于查找单源最短路径的算法。内容包括算法原理、思路解析、步骤详解以及在POJ2387问题中的应用。通过Dijkstra算法,可以找到从一个起点到其他所有点的最短路径。文章还提到了优化后的算法复杂度以及在处理无向图时的注意事项。
摘要由CSDN通过智能技术生成

简介:

Dijkstra算法是一种单源路径算法。时间复杂度为:O(n^2).比Floyd算法(O(n^3)快很多。当然,Dijkstra算法可以用堆优化后,算法复杂度成了(O(m+n)logn),复杂度更底了。本文只讲解Dijkstra的简单算法。

问题:

       给予n个城市和m条道路,求从城市1到城市n的最短距离。(可见POJ2387,5个城市,5条道路)

思路:

      与Floyd算法点松弛不同,Dijkstra算法通过松弛边的做法找到从某一个点到其他各个点的最小值。

      比如我们求从点1到其他点的最短路径。则设立一个dist数组表示从1到其他点的距离为 0 20 ∞ ∞ ∞ 100.

      则,我们在这里面先找到最短的路径。20,则20这个点必然是1号到2号的最短路径,这个点的值确定了。接下来,我们在根据这个已经确定的点,算其他边,点2的出边有3,比较1到3的距离原来是∞,然后1-2-3的距离变成20+30 = 50 (这个值小于∞,故可以更新这个点。即(dist数组值变为:0 20 50 ∞ ∞ 100

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值