es的查询过程
Elasticsearch的查询过程可以清晰地分为几个阶段,以下是基于参考文章中的信息和数字对Elasticsearch查询过程的归纳:
请求接收与分发:
客户端向Elasticsearch集群中的某个节点(通常称为协调节点)发送查询请求。
协调节点接收查询请求后,根据请求的索引和文档ID(如果有的话)确定需要查询哪些分片。
查询阶段(Query Phase):
协调节点将查询请求广播到涉及索引的每个分片的某个副本(可能是主分片或副分片)上。
每个分片在本地执行查询,并使用本地数据对查询进行评分和过滤。每个分片生成一个优先队列(priority queue),其中包含了匹配的文档ID和排序值。
每个分片将其优先队列中的文档ID和排序值返回给协调节点。
协调节点合并所有分片返回的结果,形成一个全局的优先队列。
取回阶段(Fetch Phase):
协调节点根据全局优先队列中的排序值,确定需要取回的文档ID。
协调节点向包含这些文档ID的分片发送GET请求,以获取完整的文档内容。
分片所在节点将文档内容返回给协调节点。
结果排序与返回:
协调节点等待所有文档被取回后,按照全局优先队列中的排序值对文档进行最终排序。
协调节点根据请求的from和size参数,从排序后的文档中选择一部分返回给客户端。
性能优化:
Elasticsearch提供了多种查询性能优化策略,包括索引设计优化、查询DSL优化、性能调优参数调整、缓存和预热、硬件和网络优化以及集群规模和负载均衡等。
索引设计优化包括选择合适的分词器、索引设置和字段类型,以及避免过度索引等。
查询DSL优化包括使用过滤器代替查询以减少评分计算、缓存常用查询结果等。
性能调优参数包括调整刷新间隔、副本数量、分片大小等。
需要注意的是,上述查询过程是一个简化的描述,实际的查询过程可能因Elasticsearch的版本、配置和查询类型等因素而有所不同。此外,Elasticsearch的分布式架构使得它可以并行处理查询请求,从而提供高性能的查询能力。
es数据写入过程
Elasticsearch(简称ES)的数据写入是一个分布式的过程,涉及多个节点和组件的协同工作。以下是ES数据写入过程的详细解释:
一、写入请求的接收与路由
-
协调节点的角色:
- 当客户端发送写入请求(如Index、Update或Delete请求)时,该请求首先会被发送到集群中的一个协调节点(coordinating node)。
- 协调节点负责将请求路由到适当的数据节点(data node)。
-
路由算法:
- 基于文档的ID和索引的分片配置,Elasticsearch计算该文档应该存储在哪个主分片上,以确保数据均匀分布。
- 默认路由:使用文档的ID进行哈希计算,与索引的主分片数量进行取模运算,以确定文档存储的具体分片。
- 自定义路由:使用routing参数,在写入文档时,可以使用routing参数指定自定义路由,这将覆盖默认的基于文档ID的路由逻辑。
二、数据写入主分片
-
内存写入:
- 协调节点将写入请求发送到负责存储文档的主分片数据节点。
- 主分片接收到请求后,会先将文档写入到内存中的一个称为“索引缓冲区”(index buffer)的数据结构中。
-
事务日志记录:
- 在确认写入索引缓冲区后,Elasticsearch会将写入操作记录到事务日志(Translog)中。
- 事务日志是一个持久化的日志文件,用于在发生系统崩溃或宕机时恢复数据。
-
写入成功确认:
- 一旦数据成功写入索引缓冲区和事务日志,主分片会向协调节点发送写入成功的确认消息。
三、数据同步到副本分片
-
副本分片的作用:
- 为了提高数据的可用性和容错性,Elasticsearch会为每个主分片配置一个或多个副本分片(replica shard)。
-
数据同步:
- 在主分片写入成功后,Elasticsearch会将数据异步复制到配置的副本分片上。
- 副本分片的写入过程与主分片类似,包括内存写入和事务日志记录。
-
写入成功确认:
- 主分片会等待所有副本分片写入成功后再向协调节点发送最终的写入成功确认消息。
- 如果副本分片写入失败,Elasticsearch会记录错误,并可以配置重试机制。
四、数据刷新与持久化
-
刷新操作:
- 每隔一段时间(默认每1秒),Elasticsearch会进行一次“刷新”操作。
- 刷新操作会将内存中的索引缓冲区的数据刷新到磁盘上,使这些数据变得可搜索。
-
段合并与持久化:
- 随着时间的推移,Elasticsearch会将多个小段合并成较大的段,以提升存储效率和搜索性能。
- 当os cache中的segments数据积累到一定时间(默认30分钟)或者translog达到一定大小时(默认512M),os cache中的segments会被flush到硬盘上进行持久化。
-
事务日志清理:
- 持久化成功后,对应的translog由于失去存在的意义而被删除。
五、写入请求的响应
-
成功响应:
- 如果所有主分片和副本分片都写入成功,协调节点会向客户端发送写入成功的响应。
-
失败处理:
- 如果写入请求失败,Elasticsearch会记录错误,并可以配置重试机制。
- 对于高可用性要求的场景,Elasticsearch支持在确认写入完所有副本分片后再返回成功响应,可以通过设置wait_for_active_shards来控制这一行为。
综上所述,Elasticsearch的数据写入过程是一个复杂而精细的过程,涉及多个节点和组件的协同工作以及多种机制的配合。这些机制共同确保了数据的高可用性、容错性和一致性。
ES查询中query和filter的区别
在Elasticsearch(通常简称为ES)中,query
和 filter
都是用于检索文档的重要概念,但它们之间有一些关键的区别。不过,值得注意的是,从Elasticsearch 2.x版本开始,filter
的概念逐渐被整合到query
的bool
查询中,通过must_not
和filter
子句来实现类似的功能。但在理解它们的原始概念时,以下区别仍然是有用的:
-
评分(Scoring):
- Query:查询会对匹配的文档进行评分(scoring),基于文档与查询的相关性,为每个文档分配一个分数。这些分数用于决定在搜索结果中的排序。
- Filter:过滤器不对文档进行评分。它们只是简单地包括或排除文档,基于是否满足指定的条件。因此,使用过滤器可以更快地进行搜索,因为不需要计算评分。
-
缓存(Caching):
- Filter:过滤器通常会被缓存,特别是当它们不依赖于文档的内容(例如,基于时间范围的过滤器)时。这意味着,如果相同的过滤器被多次使用,那么Elasticsearch可以快速地返回结果,而不需要重新计算。
- Query:查询通常不会被缓存,因为它们依赖于文档的内容,并且可能会随着文档内容的更改而更改。
-
使用场景:
- Query:当你想要基于文档的相关性对搜索结果进行排序时,使用查询。例如,全文搜索、模糊搜索等。
- Filter:当你只关心文档是否满足某些条件,而不关心其相关性时,使用过滤器。例如,基于日期、ID、状态等字段的搜索。
-
语法:
- 在较新的Elasticsearch版本中(如7.x和更高版本),
filter
子句通常作为bool
查询的一部分出现,例如must_not
和filter
子句。但在早期版本中,filter
是一个独立的查询类型。
- 在较新的Elasticsearch版本中(如7.x和更高版本),
-
性能:
- 由于过滤器不对文档进行评分,并且通常会被缓存,因此它们通常比查询更快。但是,这也取决于查询和过滤器的具体类型以及索引的大小和结构。
总的来说,query
和filter
在Elasticsearch中都扮演着重要的角色,但你应该根据你的具体需求来选择使用哪一个。如果你只关心文档是否满足某些条件,并且不关心其相关性,那么使用过滤器可能是一个更好的选择。如果你想要基于文档的相关性对搜索结果进行排序,那么使用查询可能是更合适的。
ES查询中match和term的区别
在Elasticsearch(ES)查询中,match
和term
是两种常用的查询方式,它们在功能、行为和应用场景上存在显著的区别。以下是关于match
和term
查询的详细对比:
-
功能:
match
查询:用于全文搜索场景,它在查询之前对字段值和查询字符串进行分词(tokenization)处理。match
查询会应用字段指定的分析器(如果有的话)来处理查询字符串,这意味着它会处理文本数据的大小写、同义词、停用词等。term
查询:用于精确值匹配,它不会对字段值或查询字符串进行分词处理。term
查询直接在倒排索引中查找准确的术语,不会应用字段的分析器。
-
应用场景:
match
查询:适合用于文本字段,如文章内容、产品描述等。由于它会对查询条件进行分词处理,因此能够处理文本中的同义词、变体等,更适合处理人类语言中的复杂性和不确定性。term
查询:适合用于关键字(keyword)、数字、日期等精确值字段。由于它不会进行分词处理,因此更适合技术性和精确性较高的场景,如过滤、分类标签匹配等。
-
分词处理:
match
查询:会对查询条件进行分词处理,根据分析器的配置来将查询字符串切分为多个词项(term)。term
查询:不会对查询条件进行分词处理,直接以完整的词项(term)进行匹配。
-
效率:
- 由于
term
查询直接在倒排索引中查找准确的术语,通常会比match
查询更高效,因为match
查询需要先进行分词处理再进行搜索。
- 由于
-
灵活性:
match
查询更适合处理文本数据,能够处理文本中的同义词、变体等,因此具有更高的灵活性。term
查询则更适合精确值匹配,具有更高的准确性和可预测性。
-
示例:
match
查询示例:当使用match
查询搜索包含“quick brown fox”的文档时,如果文档中包含“quick”、“brown”或“fox”中的任意一个或全部词汇,文档就会被匹配。term
查询示例:当使用term
查询搜索状态为“active”的文档时,只有当状态字段的值完全是“active”(区分大小写)时,文档才会被匹配。
总结来说,match
和term
查询在Elasticsearch中各有其应用场景和优势。match
查询适用于全文搜索场景,能够处理文本数据的复杂性和不确定性;而term
查询则适用于精确值匹配场景,具有更高的准确性和可预测性。在实际应用中,应根据具体的数据特性和查询需求选择合适的查询方式。
es常用的聚合查询
在Elasticsearch中,聚合查询(Aggregation Queries)是用于对文档进行分组、统计和分析的强大工具。它们允许您计算文档的统计信息,如总数、平均值、最大值、最小值等,并可以根据特定字段对文档进行分组。以下是Elasticsearch中常用的一些聚合查询的概述和示例:
1. Bucket 聚合
Bucket聚合用于将文档集合划分为多个buckets(桶),每个bucket包含满足特定条件的文档。
- Terms 聚合:基于字段的值对文档进行分组。
GET /index/_search
{
"aggs": {
"group_by_field": {
"terms": {
"field": "field_name",
"size": 10 // 返回的bucket数量
}
}
}
}
- Range 聚合:基于字段的数值范围对文档进行分组。
GET /index/_search
{
"aggs": {
"prices": {
"range": {
"field": "price",
"ranges": [
{ "to": 100 },
{ "from": 100, "to": 200 },
{ "from": 200 }
]
}
}
}
}
2. Metrics 聚合
Metrics聚合用于计算文档集合的统计信息。
- Avg 聚合:计算字段的平均值。
GET /index/_search
{
"aggs": {
"avg_value": {
"avg": {
"field": "field_name"
}
}
}
}
- Sum 聚合:计算字段的总和。
GET /index/_search
{
"aggs": {
"sum_value": {
"sum": {
"field": "field_name"
}
}
}
}
- Min/Max 聚合:计算字段的最小值和最大值。
GET /index/_search
{
"aggs": {
"min_value": {
"min": {
"field": "field_name"
}
},
"max_value": {
"max": {
"field": "field_name"
}
}
}
}
- Cardinality 聚合:计算字段的唯一值数量(去重)。
GET /index/_search
{
"aggs": {
"cardinality_field": {
"cardinality": {
"field": "field_name",
"precision_threshold": 10000 // 调整精度和内存使用的阈值
}
}
}
}
3. Pipeline 聚合
Pipeline聚合是对前面聚合结果的进一步处理,例如对另一个聚合的结果进行平均、求和等操作。
4. 嵌套聚合
可以将多个聚合嵌套在一起,以便在一个查询中执行复杂的分组和统计操作。
5. 注意事项
- 在使用聚合查询时,请注意查询的性能和内存使用情况,特别是在处理大量数据时。
- 聚合查询的结果可能很大,因此请确保您的Elasticsearch集群有足够的资源来处理这些结果。
- 在设计聚合查询时,尽量保持查询的简洁和高效,避免不必要的计算和复杂性。
除了之前提到的聚合类型,Elasticsearch还提供了其他一些聚合方式,以满足更复杂的查询和分析需求。以下是Elasticsearch中其他聚合查询的详细概述:
1. Bucket 聚合(续)
除了Terms和Range聚合,还有其他几种Bucket聚合:
- Date Histogram 聚合:基于日期字段进行时间间隔分组。
GET /index/_search
{
"aggs": {
"sales_over_time": {
"date_histogram": {
"field": "date",
"calendar_interval": "month"
}
}
}
}
- Filter 聚合:基于特定查询匹配的结果进行分组。
GET /index/_search
{
"aggs": {
"filtered_sales": {
"filter": {
"term": { "region": "east" }
},
"aggs": {
"total_sales": { "sum": { "field": "amount" } }
}
}
}
}
- GeoHash Grid 聚合:基于地理坐标进行网格分组。
GET /index/_search
{
"aggs": {
"locations": {
"geohash_grid": {
"field": "location",
"precision": 3
}
}
}
}
2. Metrics 聚合(续)
除了之前提到的Avg、Sum、Min、Max和Cardinality聚合,还有其他Metrics聚合:
- Percentiles 聚合:计算字段的百分位数。
GET /index/_search
{
"aggs": {
"load_time_outliers": {
"percentiles": {
"field": "load_time",
"percents": [95, 99]
}
}
}
}
- Stats 聚合:一个同时提供count、min、max、avg和sum的聚合。
GET /index/_search
{
"aggs": {
"sales_stats": { "stats": { "field": "amount" } }
}
}
3. Pipeline 聚合
- Derivative 聚合:计算序列之间的差异(如计算斜率)。
- Cumulative Sum 聚合:计算序列的累积和。
- Moving Average 聚合:计算滑动窗口内的平均值。
4. 复合聚合(Compound Aggregations)
- Children 聚合:根据父子关系对文档进行分组。
- Nested 聚合:对嵌套文档进行聚合。
5. 矩阵聚合(Matrix Aggregations)
- Matrix Stats 聚合:对多个数值字段进行统计计算,如协方差、相关性等。
6. 其他
- Scripted Metric 聚合:使用脚本进行自定义的聚合计算。
这些聚合类型可以根据具体的查询需求进行组合和嵌套,以实现复杂的分析和数据可视化。当设计聚合查询时,请考虑查询的性能和效率,并适当使用Elasticsearch的优化功能,如分页、限制返回结果数量等。
如果description字段类型是text { “query”: { “term”: { “description”: “java程序员” } } }这个查询结果什么
如果description
字段的类型是text
,并且你执行了如下的term
查询:
{
"query": {
"term": {
"description": "java程序员"
}
}
}
这个查询的结果可能不会如你所期望的那样返回包含“java程序员”这个完整短语的文档。原因是text
类型的字段在索引时会被分词器(如Elasticsearch的默认分词器standard
)分词成单独的词条(tokens),例如“java”和“程序员”,而不是作为一个整体短语来存储。
term
查询是精确匹配查询,它会在倒排索引中查找与查询中指定的确切词条相匹配的文档。由于你的查询字符串是“java程序员”,但text
字段中的值被分词成了单独的词条,Elasticsearch会尝试找到字段中恰好包含“java程序员”这个完整字符串(作为单个词条)的文档,但实际上这样的文档几乎不可能存在,因为分词器已经将其拆分成了多个词条。
因此,这个查询很可能会返回空结果,或者仅返回那些恰好由于某种原因(如分词器配置错误、用户输入错误等)导致“java程序员”作为一个整体未被分词的文档(这在正常情况下是非常罕见的)。
如果你想要搜索包含“java程序员”这个短语的文档,你应该使用match_phrase
查询而不是term
查询。match_phrase
查询会要求查询中的词条在文档中按指定顺序连续出现,如下所示:
{
"query": {
"match_phrase": {
"description": "java程序员"
}
}
}
这个查询会返回description
字段中包含“java程序员”这个短语的文档,其中“java”和“程序员”这两个词条必须连续且顺序正确地出现。
分析这条语句
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": {
"value": "小米"
}
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
这条Elasticsearch查询语句包含了查询(query)和聚合(aggregations)两个部分。下面是该查询的详细分析:
查询部分(Query)
查询部分使用了term
查询来筛选出品牌(brand
)为“小米”的文档。但是,这里有一个小错误:term
查询的语法应该直接指定字段名和值,而不是将它们嵌套在另一个对象中。正确的term
查询应该像这样:
"term": {
"brand": "小米"
}
而不是:
"term": {
"brand": {
"value": "小米"
}
}
聚合部分(Aggregations)
single_brand_avg_price
聚合
这个聚合计算了品牌为“小米”的电视的平均价格(avg
)。由于查询部分已经限定了品牌为“小米”,所以这个聚合只会考虑满足该条件的文档。
all
聚合
这个聚合是一个全局聚合(global
),它允许你在不考虑查询匹配条件的情况下对索引中的所有文档进行聚合。在这个例子中,即使查询部分限制了品牌为“小米”,all
聚合仍然会考虑索引中的所有文档。
在all
聚合内部,有一个名为all_brand_avg_price
的子聚合,它计算了所有电视的平均价格(不考虑品牌)。
修正后的查询
修正后的查询语句如下:
GET /tvs/_search
{
"size": 0,
"query": {
"term": {
"brand": "小米"
}
},
"aggs": {
"single_brand_avg_price": {
"avg": {
"field": "price"
}
},
"all": {
"global": {},
"aggs": {
"all_brand_avg_price": {
"avg": {
"field": "price"
}
}
}
}
}
}
预期结果
查询结果将包括两部分:
-
Hits:由于
size
设置为0,所以这部分将是空的,不显示任何匹配的文档。 -
Aggregations:
single_brand_avg_price
:显示品牌为“小米”的电视的平均价格。all
->all_brand_avg_price
:显示所有电视(不论品牌)的平均价格。
这两个平均值将作为聚合结果返回,允许你比较品牌“小米”的平均价格与所有品牌的平均价格。
es 聚合查询
在Elasticsearch(简称ES)中,聚合查询(Aggregations)是一个非常强大的特性,它允许你对数据进行复杂的分析和统计。Elasticsearch提供了多种类型的聚合,包括桶(Bucket)聚合和度量(Metric)聚合。桶聚合用于将数据分组,而度量聚合用于对这些分组进行统计计算。
桶(Bucket)聚合
桶聚合将文档集合分成多个组,每个组被称为一个桶。常见的桶聚合有:
- terms:根据字段的术语(即值)进行分组。
- date_histogram:根据时间间隔(如日、月、年)进行分组。
- range:根据数值范围进行分组。
- geo_hash_grid:根据地理位置进行网格分组。
度量(Metric)聚合
度量聚合用于对桶中的文档执行数值计算。常见的度量聚合有:
- avg:计算平均值。
- min:找出最小值。
- max:找出最大值。
- sum:求和。
- stats:同时返回avg、min、max、sum和count。
- cardinality:计算去重后的唯一值数量。
示例
假设我们有一个存储博客文章的索引,我们想找出每个作者的文章数量以及这些文章的平均字数。
GET /blog_posts/_search
{
"size": 0,
"aggs": {
"authors": {
"terms": {
"field": "author.keyword",
"size": 10
},
"aggs": {
"average_words": {
"avg": {
"field": "words"
}
}
}
}
}
}
在这个查询中:
- 我们使用了
size: 0
来避免返回任何文档,因为我们只对聚合结果感兴趣。 aggs
字段包含了我们的聚合定义。- 我们首先定义了一个名为
authors
的terms
聚合,它根据author.keyword
字段进行分组。 - 在
authors
聚合内部,我们又定义了一个名为average_words
的avg
聚合,用于计算每个作者文章的平均字数。
注意事项
- 聚合查询可能非常消耗资源,特别是在处理大量数据时。
- 确保你的Elasticsearch集群有足够的资源来处理复杂的聚合查询。
- 聚合查询的响应体可能非常大,特别是当分组很多或返回很多文档时。考虑使用分页或调整
size
参数来限制返回的桶数量。
Elasticsearch的聚合功能非常强大,通过组合不同的桶和度量聚合,你可以执行复杂的数据分析任务。
在Elasticsearch中,term
查询和terms
查询都是用于精确匹配字段值的查询类型,但它们之间存在一些关键差异。
14.7.5 term query
当字段被设置为keyword
类型时,该字段在索引和搜索时都不会进行分词处理。这意味着整个字段值会被视为一个单一的词条来存储和搜索。因此,term
查询在这种情况下非常有用,因为它允许你进行精确的匹配。
在你给出的例子中:
GET /book/_search
{
"query": {
"term": {
"description": "java程序员"
}
}
}
这个查询会搜索book
索引中description
字段值完全等于“java程序员”的文档。由于description
字段是keyword
类型,因此Elasticsearch会查找与该精确字符串完全匹配的文档,而不会进行任何分词处理。
14.7.6 terms query
terms
查询是term
查询的扩展,它允许你指定多个匹配项,而不是单个匹配项。terms
查询会查找字段中包含查询中指定任一值的文档。
在你给出的例子中:
GET /book/_search
{
"query": { "terms": { "tag": [ "search", "full_text", "nosql" ] }}
}
这个查询会搜索book
索引中tag
字段包含“search”、“full_text”或“nosql”中任一值的文档。与term
查询类似,由于tag
字段(假设它是keyword
类型)在索引和搜索时不会进行分词处理,因此这个查询会进行精确的匹配。
注意事项
- 如果你的字段是
text
类型,并且你想要进行精确短语匹配(即“java程序员”作为一个整体出现),你应该使用match_phrase
查询而不是term
查询,因为text
类型的字段在索引时会被分词处理。 term
和terms
查询对于keyword
类型的字段非常有用,因为它们允许进行精确的匹配。然而,对于text
类型的字段,你可能需要更复杂的查询类型(如match
、match_phrase
、wildcard
等)来满足你的搜索需求。- 在使用
terms
查询时,如果查询列表中的值非常多(例如,成千上万个),可能会对性能产生影响。在这种情况下,考虑使用其他查询策略或优化你的索引和查询设置。
- Scroll 分页方式和Search After查询差异
Scroll分页方式和Search After查询在Elasticsearch中都是用于处理大数据量分页查询的方法,但它们在工作原理、适用场景和性能特点上有所不同。以下是对这两种方法的详细对比:
Scroll分页方式
-
工作原理:
- Scroll类似于SQL中的cursor,它允许用户逐步遍历查询结果。
- 首次查询时,Elasticsearch会创建一个快照,记录当前索引的状态,并返回一个scroll_id。
- 后续查询时,用户可以使用这个scroll_id来获取下一页的内容,直到所有结果都被遍历完。
-
适用场景:
- Scroll适用于需要导出全量数据的场景,如数据迁移或备份。
- 由于Scroll查询是基于快照进行的,因此在查询过程中索引的变更(如新增、删除或更新数据)不会反映到查询结果中。
-
性能特点:
- Scroll查询的性能通常较高,因为它避免了全局排序和深度分页的问题。
- 然而,Scroll查询需要维护一个scroll_id,并且每次查询都会消耗资源,因此不适合用于实时查询或高并发场景。
Search After查询
-
工作原理:
- Search After是基于上一次查询的最后一条数据来确定下一次查询的位置。
- 它需要一个全局唯一的字段(如_uid或业务层的id)来标识每个文档,以便在后续查询中定位到正确的位置。
- 每次查询时,Elasticsearch会根据提供的字段值和排序规则来返回下一页的数据。
-
适用场景:
- Search After适用于需要实时查询和分页的场景,如实时数据展示或在线搜索。
- 由于它不需要维护一个快照,因此可以实时反映索引的变更。
-
性能特点:
- Search After查询的性能通常优于传统的from+size分页方式,因为它避免了深度分页带来的性能问题。
- 然而,Search After查询需要事先对结果进行排序,并且每次查询都依赖于上一次查询的结果,因此不支持跳页查询。
总结
Scroll分页方式和Search After查询各有优缺点,选择哪种方式取决于具体的应用场景和需求。如果需要导出全量数据且不关心数据的实时性,可以选择Scroll分页方式;如果需要实时查询和分页,并且希望避免深度分页带来的性能问题,可以选择Search After查询。在实际应用中,可以根据具体需求和系统性能进行权衡和选择。
查询调优为什么要禁用 Wildcard 查询
在Elasticsearch中,查询性能的优化是至关重要的,尤其是当数据量非常大时。优化查询逻辑的一个关键方面是避免使用那些成本较高的查询操作,比如wildcard(通配符)查询和大范围的range(范围)查询。下面我将详细解释这些概念以及为什么它们成本较高,同时提供一些建议来使用更合适的查询类型和结构。
1. Wildcard 查询
Wildcard 查询允许你使用通配符(如 *
和 ?
)来匹配字符串。例如,title:*book*
会匹配所有标题中包含 “book” 的文档。然而,Wildcard 查询的成本非常高,因为它们需要逐个字符地扫描索引中的每个项来查找匹配项。这种扫描通常是全表扫描的变体,对性能有很大的影响,特别是在大数据集上。
优化建议:
- 尽量避免在查询的开头使用通配符(如
*book
),因为这会强制 Elasticsearch 扫描所有项。如果必须在字符串中间或末尾使用通配符(如book*
),则性能影响会较小。 - 考虑使用 n-gram 或 edge n-gram 分析器来预处理文本,这样你就可以使用普通的 term 查询来代替 wildcard 查询,从而提高性能。
- 如果可能,重新考虑数据模型或查询需求,以避免使用 wildcard 查询。
2. 大范围的 Range 查询
Range 查询允许你根据数值或日期的范围来匹配文档。例如,price:[100 TO 500]
会匹配价格在 100 到 500 之间的所有文档。虽然 Range 查询在很多情况下是非常有用的,但是当范围非常大时,它们可能会变得非常昂贵。这是因为 Elasticsearch 可能需要扫描大量的索引项来找到匹配项,特别是当范围跨越了多个分片时。
优化建议:
- 尽可能缩小查询范围。例如,如果你知道用户通常只对特定价格范围内的商品感兴趣,那么可以在应用程序级别上预先过滤这些范围,以减少 Elasticsearch 需要处理的数据量。
- 考虑使用日期直方图或数值直方图字段来近似查询范围,这些字段可以在索引时预先计算并存储,从而在查询时提供更快的性能。
- 如果你的查询经常基于时间范围(如过去一周内的文档),考虑使用日期数学来动态计算查询范围,并确保你的索引是按照时间顺序组织的(例如,使用时间戳作为文档 ID 的一部分或使用时间序列索引)。
使用合适的查询类型和结构
为了优化查询性能,你应该选择最适合你数据模型和查询需求的查询类型和结构。例如:
- 使用 term 查询来匹配精确的关键词。
- 使用 match 查询来进行全文搜索,并利用 Elasticsearch 的分析器来处理文本。
- 使用 bool 查询来组合多个查询条件,并利用 must、should、must_not 和 filter 子句来精确控制查询逻辑。
- 使用 nested 查询来查询嵌套对象中的字段。
- 使用 geo_shape 查询来处理地理位置数据。
总之,优化 Elasticsearch 查询性能的关键在于理解你的数据模型和查询需求,并选择最适合这些需求的查询类型和结构。通过避免高成本的查询操作,并充分利用 Elasticsearch 提供的各种查询功能,你可以显著提高查询性能并改善用户体验。
es 每天凌晨定时对索引做 force_merge 操作,以释放空间
在Elasticsearch(ES)中,每天凌晨定时对索引做force_merge
操作是一种有效的空间释放策略。以下是对这一操作的详细解释:
一、force_merge
操作的作用
- 释放空间:
force_merge
操作通过将多个小的索引段(index segment)合并为一个或少量的更大段,来减少磁盘空间的使用。在Elasticsearch中,随着数据的不断更新和删除,会产生大量的索引段,这些小的索引段会占用一定的磁盘空间。通过force_merge
操作,可以将这些小的索引段合并,从而释放被删除文档所占用的磁盘空间。 - 优化性能:虽然
force_merge
的主要目的是释放空间,但在某些情况下,它也可以优化搜索性能。通过减少索引段的数量,可以降低搜索时的开销,提高搜索效率。
二、定时执行force_merge
操作
- 时间选择:每天凌晨定时执行
force_merge
操作是一个合适的选择。因为这个时间段通常是业务低峰期,对系统的影响较小。 - 操作方式:可以通过Elasticsearch的API来执行
force_merge
操作。具体的API调用方式可以参考Elasticsearch的官方文档或相关教程。 - 参数设置:在执行
force_merge
操作时,可以设置一些参数来控制合并的行为。例如,可以设置最大索引段数(max_num_segments
)来限制合并后索引段的数量。此外,还可以设置是否只删除被标记为删除的文档(only_expunge_deletes
)等参数。
三、注意事项
- 谨慎使用:
force_merge
操作是一个重量级的操作,会对系统性能产生一定影响。因此,在执行此操作时需要谨慎,避免在业务高峰期执行。 - 监控和评估:在执行
force_merge
操作后,需要监控系统的性能和空间使用情况,以评估操作的效果。如果发现性能下降或空间释放不明显,需要及时调整策略。 - 备份数据:在执行任何可能影响数据完整性的操作之前,都应该先备份数据。这样可以确保在出现问题时能够及时恢复数据。
综上所述,每天凌晨定时对Elasticsearch索引做force_merge
操作是一种有效的空间释放策略。但在执行此操作时需要注意时间选择、操作方式、参数设置以及注意事项等方面的问题。
在Elasticsearch中,随着数据的不断更新和删除,会产生大量的索引段 怎么理解这句话
在Elasticsearch中,随着数据的不断更新和删除,会产生大量的索引段,这句话可以从以下几个方面来理解:
一、Elasticsearch的索引机制
Elasticsearch是一个基于Apache Lucene构建的开源搜索引擎,它使用倒排索引来实现高效的搜索功能。倒排索引是一种数据结构,用于存储单词到文档映射的索引,使得搜索引擎能够快速找到包含特定单词的文档。
二、索引段的产生
- 数据更新:在Elasticsearch中,每当有新的数据被索引时,它会被添加到内存缓冲区中,并随后被写入到磁盘上的索引段中。这些索引段是倒排索引的组成部分,它们包含了单词到文档ID的映射信息。
- 数据删除:当数据被删除时,Elasticsearch并不会立即从磁盘上删除对应的索引段。相反,它会在索引段中标记这些文档为已删除。这意味着,虽然这些文档在逻辑上已经被删除,但它们的物理存储仍然占用着磁盘空间。
三、索引段的增长与合并
- 索引段的增长:随着时间的推移,由于数据的不断更新和删除,Elasticsearch会产生越来越多的索引段。这些索引段的大小和数量会不断增加,从而占用更多的磁盘空间。
- 索引段的合并:为了优化性能和释放空间,Elasticsearch会在后台自动进行索引段的合并操作。通过合并小的索引段为更大的索引段,可以减少索引段的数量,降低搜索时的开销,并提高搜索效率。同时,合并操作还可以删除那些被标记为已删除的文档,从而释放它们所占用的磁盘空间。
四、理解“大量索引段”的含义
因此,当说“随着数据的不断更新和删除,会产生大量的索引段”时,实际上是指Elasticsearch在处理数据时,会不断产生新的索引段来存储新的数据,并在删除数据时标记旧的索引段中的文档为已删除。这些操作会导致索引段的数量不断增加,从而占用更多的磁盘空间。如果不对这些索引段进行合并和优化,就可能导致性能下降和空间浪费。
综上所述,理解Elasticsearch中索引段的产生和增长机制对于优化搜索性能和释放磁盘空间至关重要。通过定期合并索引段和删除已删除的文档,可以确保Elasticsearch的高效运行和磁盘空间的合理利用。
仅针对需要分词的字段,合理的设置分词器
在Elasticsearch中,针对需要分词的字段设置合理的分词器是至关重要的。分词器(Tokenizer)是Elasticsearch中用于将文本数据分割成单独的词汇单元的组件,是搜索引擎索引和搜索文本数据的重要步骤之一。以下是对如何合理设置分词器的详细解释:
一、了解分词器的类型
Elasticsearch提供了多种内置的分词器,如standard、simple、whitespace、keyword等,以及针对特定语言的分词器(如english、french等)和中文分词器(如IK Analyzer)。每种分词器都有其特定的用途和分词规则。
二、根据字段内容选择合适的分词器
-
英文字段:
- 对于英文文本,通常可以使用Elasticsearch的默认分词器standard,它会根据空格、标点符号等将文本拆分成词项,并进行小写转换和标点符号过滤。
- 如果需要更精细的分词规则,可以考虑使用english分词器,它提供了针对英文文本的特定优化。
-
中文字段:
- 对于中文文本,由于中文没有空格来分隔单词,因此需要使用专门设计的中文分词器。IK Analyzer是一个常用的中文分词插件,它提供了ik_smart和ik_max_word两种分词模式,分别适用于粗粒度和细粒度的分词需求。
-
其他语言字段:
- 对于其他语言的文本,Elasticsearch也提供了相应的语言特定分词器,如french、spanish等。这些分词器根据特定语言的规则进行分词,可以提供更准确的分词结果。
-
特殊字段:
- 对于一些特殊格式的字段,如日期、时间、电子邮件地址等,可以使用keyword分词器,将整个字段作为一个单一的词汇单元进行索引。
三、自定义分词器(如需)
如果内置的分词器无法满足特定需求,Elasticsearch还支持用户自定义分词器。通过组合使用内置分词器和过滤器,可以创建符合特定业务需求的分词器。例如,可以创建一个自定义的中文分词器,结合IK Analyzer的分词算法和自定义的停用词表、同义词表等过滤器,以实现更精确的分词和索引。
四、设置分词器
在Elasticsearch中设置分词器通常需要在创建索引时进行。可以通过定义索引的settings部分来指定分词器配置。例如,为英文文本字段设置english分词器,或为中文文本字段设置IK Analyzer的ik_smart分词器。
五、测试和验证分词效果
在设置完分词器后,应使用Elasticsearch的analyze API来测试分词器的效果。通过向analyze API发送包含待分词文本的请求,可以获取分词器对文本的分词结果。这有助于验证分词器是否按预期工作,并对其进行必要的调整和优化。
综上所述,针对需要分词的字段设置合理的分词器是Elasticsearch索引和搜索过程中的重要步骤。通过了解分词器的类型、根据字段内容选择合适的分词器、自定义分词器(如需)、设置分词器以及测试和验证分词效果等步骤,可以确保Elasticsearch中的文本数据被正确解析和索引,从而提升搜索和查询的准确性。
es的写入一致性级别支持 quorum/one/all,默认为 quorum
您提到的内容是关于Elasticsearch写操作一致性级别的准确描述。在Elasticsearch中,为了确保数据的一致性和可靠性,写操作的一致性级别被设置为quorum、one或all,其中quorum是默认设置。以下是对这些一致性级别的详细解释:
-
quorum(默认):
- 含义:只有当大多数分片(包括主分片和副本分片)可用时,才允许进行写操作。
- 优点:提供了较高的数据一致性和可用性保障,因为写操作需要得到大多数分片的确认。
- 缺点:在网络分区或某些分片故障的情况下,可能会导致写操作被阻塞,直到足够的分片变得可用。
- 重建机制:如果因为网络等原因导致写入副本失败,该副本会被认为是故障的,Elasticsearch会在不同的节点上重建该分片,以确保数据的冗余和可用性。
-
one:
- 含义:只要主分片响应即可进行写操作,无需等待副本分片的确认。
- 优点:提高了写操作的性能,因为无需等待副本分片的同步。
- 缺点:降低了数据的一致性,因为如果主分片在写入后崩溃,而副本分片尚未同步,则可能会导致数据丢失。
-
all:
- 含义:要求所有相关分片(包括主分片和所有副本分片)都必须响应才能进行写操作。
- 优点:提供了最高的数据一致性保障,因为写操作需要得到所有分片的确认。
- 缺点:显著降低了写操作的性能,因为需要等待所有分片的同步。
在实际应用中,选择哪种一致性级别需要根据具体的需求和场景来决定。例如,在需要高一致性的场景下,可以选择all或quorum;在需要高性能的场景下,可以选择one。但需要注意的是,一致性级别的选择会直接影响到数据的可靠性和系统的性能,因此需要在权衡利弊后做出决策。
此外,Elasticsearch还提供了一系列其他机制来确保数据的一致性和可靠性,如主分片和副本分片的使用、复制策略、自动故障转移等。这些机制共同协作,使得Elasticsearch能够在分布式环境中有效地管理和维护数据的一致性。
Elasticsearch会在不同的节点上重建该分片 这个重建分片是什么意思
在Elasticsearch中,当某个分片(无论是主分片还是副本分片)因为某些原因(如节点故障、磁盘损坏或网络问题等)而无法正常工作时,Elasticsearch会在集群中的其他可用节点上重新创建这个分片的过程,被称为“重建分片”。
重建分片的主要目的是确保数据的冗余和可用性。在Elasticsearch中,每个索引的数据都被分割成多个分片,并且这些分片可以在集群中的不同节点上进行存储和复制。当某个分片出现故障时,如果不进行重建,那么与该分片相关的数据将无法被访问或处理,这可能会导致数据丢失或服务中断。
重建分片的过程通常涉及以下几个步骤:
- 检测故障:Elasticsearch会定期检测集群中各个节点的健康状况,包括节点的CPU使用率、内存使用情况、磁盘空间以及网络连接状态等。当检测到某个节点或分片出现故障时,Elasticsearch会触发重建分片的流程。
- 选择重建节点:Elasticsearch会在集群中选择一个或多个健康的节点来重建故障分片。选择节点的过程会考虑多个因素,如节点的剩余存储空间、计算能力、网络连接状态以及与其他节点的通信延迟等。
- 复制数据:一旦确定了重建节点,Elasticsearch会从其他可用的分片(通常是副本分片)中复制数据到这些节点上。这个过程可能会涉及大量的数据传输和同步操作,因此可能需要一些时间来完成。
- 验证数据:在数据复制完成后,Elasticsearch会对新重建的分片进行验证,以确保数据的完整性和一致性。这通常包括检查数据的校验和、比较不同分片之间的数据差异以及执行其他相关的数据验证操作。
- 更新集群状态:最后,Elasticsearch会更新集群的状态信息,以反映新重建的分片和节点的状态。这包括更新集群的元数据、更新路由表以及通知其他节点关于新分片的信息等。
需要注意的是,重建分片的过程可能会对集群的性能产生一定的影响,特别是在数据复制和验证阶段。因此,在进行重建分片操作时,建议尽量在集群负载较低的时候进行,以减少对正常业务的影响。同时,也建议定期备份集群中的数据,以防止数据丢失或服务中断的风险。
es搜索的时候是会查询 Filesystem Cache 的,但是有部分数据还在 MemoryBuffer,所以搜索是 近实时的
您提到的Elasticsearch搜索时的近实时性,确实与其内部的数据处理机制密切相关。在Elasticsearch中,数据首先被写入到内存缓冲区(Memory Buffer)中,在这个阶段,数据还不能被立即检索,因为它们还没有被写入到磁盘上的索引结构中。然而,Elasticsearch会定期(默认情况下每1秒)将内存缓冲区中的数据刷新(refresh)到一个新的segment中,并将这个segment写入到文件系统缓存(Filesystem Cache)中。
一旦segment被写入文件系统缓存,它就可以被检索了,而无需等待磁盘I/O操作完成。这是因为文件系统缓存是操作系统级别的缓存,当数据被写入到文件系统缓存中时,它就已经可以被应用程序(如Elasticsearch)通过内存访问了。因此,即使数据还没有被持久化到磁盘上,用户也可以几乎立即搜索到新索引的文档,这就是Elasticsearch搜索近实时性的原因。
需要注意的是,虽然文件系统缓存提高了搜索的近实时性,但它也增加了数据丢失的风险。如果Elasticsearch进程崩溃或节点故障发生在数据从内存缓冲区刷新到文件系统缓存但尚未持久化到磁盘上的过程中,那么这些数据可能会丢失。为了降低这种风险,Elasticsearch引入了translog(Write-Ahead Log)机制。每次文档被索引到内存缓冲区时,同时也会写入到translog中。这样,即使Elasticsearch进程意外中止,也可以通过重放translog中的所有操作来恢复数据。
综上所述,Elasticsearch的搜索近实时性是通过将数据定期从内存缓冲区刷新到文件系统缓存中实现的。同时,为了降低数据丢失的风险,Elasticsearch还引入了translog机制来确保数据的持久化。
es写入调优写入前关闭 refresh_interval 设置为-1,禁用刷新机制
在Elasticsearch中,写入数据前将refresh_interval
设置为-1,实际上是禁用了索引的自动刷新机制。这一操作通常在批量写入数据时采用,以提高写入性能。以下是对此操作的详细解释:
一、刷新机制的作用与影响
-
作用:
- 刷新(refresh)是Elasticsearch将数据从内存缓冲区(Memory Buffer)移动到文件系统缓存(Filesystem Cache)中的过程。
- 刷新后,数据变得可被搜索。
-
影响:
- 频繁的刷新会增加磁盘I/O操作,从而影响写入性能。
- 默认情况下,Elasticsearch会每隔1秒自动刷新一次索引。
二、禁用刷新机制的场景与步骤
-
场景:
- 当需要大批量写入数据时,为了最大化写入性能,可以暂时禁用刷新机制。
- 禁用刷新机制后,数据将不会立即变得可被搜索,但写入速度会显著提高。
-
步骤:
- 使用Elasticsearch的_settings API来修改索引的设置。
- 假设要修改的索引名为
my_index
,可以使用以下curl命令:curl -X PUT "localhost:9200/my_index/_settings" -H 'Content-Type: application/json' -d' { "index" : { "refresh_interval" : -1 } } '
- 这将把
my_index
索引的刷新间隔设置为-1,即禁用刷新机制。
三、恢复刷新机制
-
必要性:
- 数据写入完成后,需要恢复刷新机制,以确保新数据能够被及时搜索到。
-
步骤:
- 再次使用_settings API来修改索引的设置,将
refresh_interval
设置为一个正数(如1s)。 - 例如:
curl -X PUT "localhost:9200/my_index/_settings" -H 'Content-Type: application/json' -d' { "index" : { "refresh_interval" : "1s" } } '
- 这将把
my_index
索引的刷新间隔恢复为默认的1秒。
- 再次使用_settings API来修改索引的设置,将
四、注意事项
-
数据一致性:
- 禁用刷新机制期间,新写入的数据将不会立即变得可被搜索,这可能会影响数据的实时性。
- 因此,在需要高实时性的场景下,应谨慎使用此操作。
-
写入性能:
- 禁用刷新机制可以显著提高写入性能,特别是在大批量写入数据时。
- 但请注意,这也会增加数据在内存中停留的时间,从而增加内存使用的压力。
-
恢复操作:
- 数据写入完成后,务必及时恢复刷新机制,以确保新数据能够被及时搜索到。
- 否则,可能会导致数据搜索的延迟或遗漏。
综上所述,写入前关闭refresh_interval
设置为-1是Elasticsearch中提高写入性能的一种有效方法。但请务必在数据写入完成后及时恢复刷新机制,以确保数据的实时性和可用性。
将index属性设置为false,以节省存储空间并提高写入性能
在Elasticsearch中,将index
属性设置为false
可以节省存储空间并提高写入性能,这主要基于以下几个原因:
节省存储空间
- 当
index
属性设置为false
时,Elasticsearch不会为该字段创建倒排索引。倒排索引是Elasticsearch实现快速搜索的关键数据结构,它记录了每个词项在哪些文档中出现以及出现的位置等信息。如果不为某个字段创建倒排索引,那么与该字段相关的索引数据就不会被存储在磁盘上,从而节省了存储空间。
提高写入性能
- 减少索引创建开销:创建倒排索引是一个相对耗时的过程,因为它需要分析字段内容、提取词项、构建数据结构等。当
index
属性设置为false
时,这些步骤都会被省略,从而减少了写入操作时的索引创建开销。 - 降低索引更新频率:对于需要索引的字段,每当文档内容发生变化时,Elasticsearch都需要更新相应的倒排索引。而对于不需要索引的字段,即使其内容发生变化,也不会触发索引的更新操作,从而降低了索引的更新频率和写入操作的复杂度。
- 减少磁盘I/O操作:索引数据的存储和更新都会涉及磁盘I/O操作。当
index
属性设置为false
时,由于不需要存储和更新索引数据,因此可以减少磁盘I/O操作的次数和频率,从而提高写入性能。
适用场景
通常,将index
属性设置为false
的字段包括那些仅用于展示或仅在特定情况下使用的字段,如商品的库存量、用户的注册时间(如果不进行时间范围查询)等。这些字段通常不需要进行搜索操作,因此将其设置为不索引可以优化存储和写入性能。
需要注意的是,虽然将index
属性设置为false
可以提高写入性能和节省存储空间,但在查询时无法对这些字段进行搜索或过滤操作。因此,在设置字段属性时需要权衡业务需求和性能优化之间的关系。
综上所述,将index
属性设置为false
可以节省存储空间并提高写入性能,这主要得益于减少了索引创建开销、降低了索引更新频率以及减少了磁盘I/O操作。