术语
Strong connectivity
强连通性。图形拓扑的基本概念之一,一个图的每一个顶点(Vertex)如果能到达图中的其余任何顶点,那么这个图就是强连通的。
Closed Convex Function
闭凸函数。在数学中,对于每一个
α
\alpha
α,子水平集
{
x
∈
d
o
m
f
∣
f
(
x
)
≤
α
}
\{x\in dom f | f(x)\le \alpha \}
{x∈domf∣f(x)≤α}是闭合的,那么就称这个凸函数是闭合凸函数。
一般而言,一个proper convex function是闭合的,当且仅当这个函数是下半连续的(lower semi-continuous).
性质:
- 函数 f f f是连续函数且 d o m f dom f domf是闭合集,则 f f f是闭合函数。
Lipschitz continuity
利普希茨连续,一个比普通连续更强的光滑性条件。直觉上,利普希茨连续函数限制了函数改变的速度,符合利普希茨条件的函数的斜率,必小于一个称为利普希茨常数的实数(该常数依函数而定)。
对于在实数集的子集的函数 f : D ⊆ R → R f:D\subseteq R \to R f:D⊆R→R若存在常数 K K K,使得 ∣ f ( a ) − f ( b ) ∣ ≤ K ∣ a − b ∣ |f(a)-f(b)| \le K |a-b| ∣f(a)−f(b)∣≤K∣a−b∣,则称为利普希茨条件, K K K称为利普希茨常数。
度量空间上的利普希茨条件:
给定的度量空间
(
M
,
d
M
)
,
(
N
,
d
N
)
,
U
⊆
M
(M,d_M),(N,d_N),U\subseteq M
(M,dM),(N,dN),U⊆M.对于函数
f
:
U
→
N
f:U\to N
f:U→N,存在常数
K
K
K,使得
d
N
(
f
(
a
)
,
f
(
b
)
)
≤
K
d
M
(
a
,
b
)
,
∀
a
,
b
∈
U
d_N(f(a),f(b))\le Kd_M(a,b),\forall a,b \in U
dN(f(a),f(b))≤KdM(a,b),∀a,b∈U
Null space and Linear span
核(kernal)空间又称为零空间(null space)。一个算子
A
A
A的零空间是方程
A
v
=
0
Av=0
Av=0的所有解
v
v
v的集合,称为
A
A
A的核。
对于矩阵
A
A
A来讲,它的零空间就是所有向量的空间的线形子空间。这个线形子空间的维度叫做
A
A
A的零化度。有规则:矩阵的秩+零化度=矩阵纵列数。
A
A
A的零空间可以用来找到
A
x
=
b
Ax=b
Ax=b的所有解。如果
x
0
x_0
x0是一个特殊解,那么
x
0
x_0
x0加上任何的零空间的向量就是完全解。证明容易。
线形生成空间(Linear span)。给定域
K
K
K上的向量空间
V
V
V,集合
S
S
S的生成空间定义为所有包含
S
S
S的线形子空间
V
V
V的交集
W
W
W,则称
W
W
W是
S
S
S的生成子空间。
s
p
a
n
{
A
}
=
{
y
∈
R
m
∣
y
=
A
x
,
∀
x
∈
R
n
}
span\{A\}=\{y \in \mathbb{R}^m|y=Ax,\forall x \in \mathbb{R}^n\}
span{A}={y∈Rm∣y=Ax,∀x∈Rn}
如果 S S S的生成空间是 V V V,则称 S S S是 V V V的生成集合(spanning ser). V V V的一个生成集合不必是V的一组基(但是必定可以表示这个空间),因为期不必是线形无关的。但是,最小生成集合一定是一组基。
Uniform Continuity
一致连续,一种比连续更苛刻的连续性条件。一致连续必然连续,但反之不成立。连续刻画函数局部的性质,而已知连续刻画函数整体的性质。
直观上,一致连续可以理解为,当自变量x在足够小的范围内变动时,函数值y的变动也会被限制在足够小的范围内。
定义:
在欧几里得空间度量下,对任意的 ϵ > 0 \epsilon >0 ϵ>0,存在 δ > 0 \delta >0 δ>0,使得任意的 ∥ x − y ∥ < δ \Vert x-y \Vert<\delta ∥x−y∥<δ,就有 ∥ f ( x ) − f ( y ) ∥ < ϵ \Vert f(x)-f(y)\Vert <\epsilon ∥f(x)−f(y)∥<ϵ,函数称一致连续。