算法的时间复杂度和空间复杂度

算法时间复杂度

算法时间复杂度定义:
在进行算法分析时,语句总的执行次数T(n)是关于问题规模 n 的函数,进而分析T(n)随 n 的变化情况并确定T(n) 的数量级。算法的时间复杂度,也就是算法的时间量度,记作:T(n)=O(f(n))。它表示随问题规模 n 的增大,算法执行时间的增长率和 f(n)的增长率相同,称作算法的渐进时间复杂度,简称为时间复杂度。其中f(n)是问题规模 n 的某个函数。
(执行次数==时间)

  • 这样用大写O()来体现算法时间复杂度的记法称为大O记法
  • 一般情况下,随着输入规模 n 的增大,T(n)增长最慢的算法为最优算法
  • 三个求和算法的时间复杂度分别为O(1),O(n),O(n^2)。
    对应如下图:
    在这里插入图片描述

推导大O阶方法

攻略:

  • 用常数1取代运行时间中的所有加法常数。
  • 在修改后的运行次数函数中,只保留最高阶项。
  • 如果最高项存在且不是1,则去除与这个项相乘的常数。
  • 得到的最后结构就是大O阶

例:

  • 常数阶
    在这里插入图片描述
    这段代码的大O是 O(1)

  • 线性阶:一般含有非嵌套循环涉及线性阶,线性阶就是随着问题规模n的扩大,对应的计算次数呈直线增长。
    在这里插入图片描述
    上边这段代码,它的循环的时间复杂度为O(n),因为在循环体中的代码需要执行n次。

  • 平方阶
    在这里插入图片描述
    这段代码的时间复杂度为 O(n^2)

在这里插入图片描述
执行次数为:n+(n-1)+(n-2)+…+1 = n(n+1)/2 = n^2/2 + n/2
按照大O攻略,最终大O阶为O(n^2)

  • 对数阶
    在这里插入图片描述
    在这里插入图片描述

函数调用的时间复杂度分析

举例:
在这里插入图片描述
这个时间复杂度为 O(n)

但是如果把 function 改为下边的
在这里插入图片描述
则算法复杂度为O(n^2)

在这里插入图片描述
则算法复杂度为O(n^2)

常见的时间复杂度

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
常见的时间复杂度排序:
在这里插入图片描述

最坏情况与平均情况

  • 我们查找一个有 n 个随机数数组中的某个数字,最好的情况时第一个数字就是,那么算法的时间复杂度为O(1),但也有可能和这个数字就在最后一个位置,那么时间复杂度为O(n)。

  • 平均运行时间是期望的运行时间。

  • 最坏运行时间是一种保证。在应用中,这是一种最重要的需求,通常除非特别指定,我们提到的运行时间都是最坏情况的运行时间。

算法空间复杂度

  • 在写代码时,完全可以用空间来换取时间;
    在这里插入图片描述
    在这里插入图片描述这就是通过一笔空间上的开销来换取计算时间开销的小技巧。具体使用,看用在什么场合

  • 算法的空间复杂度通过计算算法所需的存储空间实现,算法的空间复杂度的计算公式记作:
    S(n)= O(f(n)),其中,n为问题的规模,f(n)为语句关于n所占存储空间的函数。

  • 通常,我们都是用 “时间复杂度” 来指运行时间的需求,用 “空间复杂度” 指空间需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值