学习笔记
文章平均质量分 60
偶遇一只核桃
记录研究生期间学到的知识
展开
-
SRGAN-------discriminator
w_init = tf.random_normal_initializer(stddev=0.02)b_init = None # tf.constant_initializer(value=0.0)gamma_init = tf.random_normal_initializer(1., 0.02)和之前一样的初始化操作df_dim = 64lrelu = lambda x: tl.act.lrelu(x, 0.2)leaky_relu中alpha=0.2表示x<0时激活函数的斜率原创 2021-06-27 17:50:40 · 181 阅读 · 0 评论 -
SRGAN-------generator
w_init = tf.random_normal_initializer(stddev=0.02)b_init = None # tf.constant_initializer(value=0.0)g_init = tf.random_normal_initializer(1., 0.02)w初始化为标准差为0.02的正态分布,b初始化为0,gama初始化为均值为1 标准差为0.02的正态分布with tf.variable_scope("SRGAN_g", reuse=reuse) as v原创 2021-06-25 22:27:28 · 221 阅读 · 0 评论 -
GAN模型的学习(11)———Build graph
首先跑一遍Model,然后saver = tf.train.Saver()保存和加载模型saver.save(sess, ‘路径 + 模型文件名’)tf.train.Saver()NOTE:Tensorflow 会自动生成4个文件 第一个文件为 model.ckpt.meta,保存了 Tensorflow计算图的结构,可以简单理解为神经网络的网络结构。 model.ckpt.index 和model.ckpt.data--of- 文件保存了所有变量的取值。 最后一个文件为 checkpoin原创 2021-06-03 15:42:34 · 686 阅读 · 0 评论 -
GAN模型的学习(10)———Monitoring
可视化操作tf.summary.scalar('generator_loss', self.G_loss)tf.summary.scalar('discriminator_loss', self.D_loss)tf.summary.scalar('distortion_penalty', distortion_penalty)if config.use_feature_matching_loss: tf.summary.scalar('feature_matching_loss', feat原创 2021-06-02 21:30:52 · 173 阅读 · 0 评论 -
GAN模型的学习(9)———Optimization
G_opt = tf.train.AdamOptimizer(learning_rate=config.G_learning_rate, beta1=0.5)D_opt = tf.train.AdamOptimizer(learning_rate=config.D_learning_rate, beta1=0.5)均是采用Adam优化器,学习率为2e-4,beta1=0.5theta_G = Utils.scope_variables('generator')theta_D = Utils.sco原创 2021-06-02 21:03:09 · 364 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(8)———两种loss
if config.use_vanilla_GAN is True: # Minimize JS divergence D_loss_real = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(logits=D_x, labels=tf.ones_like(D_x))) D_loss_gen = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_wi原创 2021-06-02 14:39:39 · 890 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(7)------multiscale_discriminator
if mode == 'real': print('Building discriminator D(x)') elif mode == 'reconstructed': print('Building discriminator D(G(z))') else: raise NotImplementedError('Invalid discriminator mode specified.')multiscal原创 2021-06-02 10:42:31 · 912 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(6)------decoder
def decoder(w_bar, config, training, C, reuse=False, actv=tf.nn.relu, channel_upsample=960): """ Attempt to reconstruct the image from the quantized representation w_bar. Generated image should be consistent with the true image distribution whi原创 2021-06-01 16:10:31 · 311 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(5)------dcgan_generator
1 前言没想到这份代码如此困难2 开始 def dcgan_generator(z, config, training, C, reuse=False, actv=tf.nn.relu, kernel_size=5, upsample_dim=256): """ Upsample noise to concatenate with quantized representation w_bar. + z: Drawn from latent原创 2021-06-01 10:58:56 · 166 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(4)------噪声部分
if config.sample_noise is True: print('Sampling noise...') # noise_prior = tf.contrib.distributions.Uniform(-1., 1.) # self.noise_sample = noise_prior.sample([tf.shape(self.example)[0], config.noise_dim]) noise_prior = tf.contrib.distributi原创 2021-05-31 20:34:04 · 813 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(3)------quantizerr部分
【学习笔记】GAN模型的学习(3)------quantizer部分1 引言通过前半个月的学习,感觉学习到了不少的知识,也非常享受这个过程,下面将开始quantizer的部分。2 quantizer部分@staticmethoddef quantizer(w, config, reuse=False, temperature=1, L=5, scope='image'): """ Quantize feature map over L centers to obtain discr原创 2021-05-31 19:56:21 · 190 阅读 · 0 评论 -
【学习资料】视频
李宏毅Auto-Encoder李宏毅VAE原创 2021-05-22 22:04:17 · 101 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(2)------encoder部分
1 引言前面导入数据部分,看到迭代器就开始有点看不懂了,有时间的话出一个迭代器的专题,下面就要进入正题了generator部分,但是从作者的第一行Global generator: Encode -> quantize -> reconstruct,就开始懵逼了,为啥生成器做的是encoder的工作,我在之前看李宏毅老师的视频的时候明明generator是做decoder的工作的呀,但是不管啦,继续往下看,相信看到后面会明白的啦2 解析encoder @staticmetho原创 2021-04-22 22:35:35 · 682 阅读 · 0 评论 -
【学习笔记】GAN模型的学习(1)
1 引言没想到第二天就磕到了模型,肝起来吧,前面导入的包就不赘述了,主要是记录自己学习这些代码的过程和学习到的知识点,下面开始:2 init()中的内容part 1# Build the computational graphprint('Building computational graph ...')self.G_global_step = tf.Variable(0, trainable=False)self.D_global_step = tf.Variable(0, trai原创 2021-04-19 20:08:13 · 488 阅读 · 2 评论 -
【学习笔记】 load_dataframe()的学习
【学习笔记】 load_dataframe()的学习1 引言最近刚开始尝试复现github上的论文,经过一周环境的配置和调试代码跑起来了,然后学习了相关理论的基础知识,现在开始逐句学习代码,load_dataframe()函数在load data模块,ctrl进去他是这样定义的。 @staticmethod def load_dataframe(filename, load_semantic_maps=False): df = pd.read_hdf(filename,原创 2021-04-15 20:03:48 · 527 阅读 · 0 评论 -
【学习笔记】get_checkpoint_state()学习
【读书笔记】get_checkpoint_state()学习1 引言最近复现了第一个项目,由于项目需要训练的时间非常长,所以开始考虑用断点续训的方法来进行分段训练,找了一通之后发现,其实源代码中是有写的,更改了了checkpoint的地址后,每次还是重头开始训练,查看了checkpoint的文件夹每隔5个eproch保存了一个checkpoint,推测应该是还需要在源代码中设置开始训练的checkpoint的文件名称,下面针对get_checkpoint()开始学习。2 总体说明具体代码如下@t原创 2021-04-15 19:24:20 · 965 阅读 · 0 评论