首先跑一遍Model,然后saver = tf.train.Saver()
保存和加载模型
saver.save(sess, ‘路径 + 模型文件名’)
tf.train.Saver()
NOTE:
Tensorflow 会自动生成4个文件 第一个文件为 model.ckpt.meta,保存了 Tensorflow
计算图的结构,可以简单理解为神经网络的网络结构。 model.ckpt.index 和
model.ckpt.data--of- 文件保存了所有变量的取值。 最后一个文件为 checkpoint
文件,保存了一个目录下所有的模型文件列表。
feed_dict_test_init = {
gan.test_path_placeholder: test_paths}
feed_dict_train_init = {
gan.path_placeholder: paths}
这里解释不好,也不强行解释了
在tf.Session()中,有个tf.ConfigProto()它的主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算,在这里也不过多解释了,详情见:Tensorflow中tf.ConfigProto()详解
正式进入session
sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())
初始化全局变量,初始化局部变量
train_handle = sess.run(gan.train_iterator.string_handle())
test_handle = sess.run