GAN模型的学习(11)———Build graph

本文介绍了如何在TensorFlow中保存和恢复模型,特别是使用saver.save和saver.restore进行操作。文章通过GAN模型为例,强调了model.ckpt.meta、.index和.data文件的重要性,并提及了tf.ConfigProto()在配置Session运算方式中的作用。
摘要由CSDN通过智能技术生成

首先跑一遍Model,然后saver = tf.train.Saver()保存和加载模型
saver.save(sess, ‘路径 + 模型文件名’)
tf.train.Saver()
NOTE:

Tensorflow 会自动生成4个文件 第一个文件为 model.ckpt.meta,保存了 Tensorflow
计算图的结构,可以简单理解为神经网络的网络结构。 model.ckpt.index 和
model.ckpt.data--of- 文件保存了所有变量的取值。 最后一个文件为 checkpoint
文件,保存了一个目录下所有的模型文件列表。

feed_dict_test_init = {
   gan.test_path_placeholder: test_paths}
feed_dict_train_init = {
   gan.path_placeholder: paths}

这里解释不好,也不强行解释了
在tf.Session()中,有个tf.ConfigProto()它的主要的作用是配置tf.Session的运算方式,比如gpu运算或者cpu运算,在这里也不过多解释了,详情见:Tensorflow中tf.ConfigProto()详解
正式进入session

sess.run(tf.global_variables_initializer())
sess.run(tf.local_variables_initializer())

初始化全局变量,初始化局部变量

train_handle = sess.run(gan.train_iterator.string_handle())
test_handle = sess.run
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值