从导数到梯度下降算法

函数的导数(derivative)描述了函数的变化率:
  • 导数越大,表示函数增加的越快
  • 导数越小,表示函数减少的越快
  • 导数 = 0,对应函数的极值

导数(derivative)
对于一个误差函数(error function),我们期望找到误差函数最小的点,使得E(x)最小,那么,就要找到一个x的变化量 Δ x \Delta x Δx,使得导数最小,这样,误差函数会按照最快的减少速度逼近最小值。当x的变化方向与导数方向180°相反时,函数减少的越快,越容易逼近最小值,即: Δ x = − η ∗ E ′ ( x ) , 这 里 η 是 一 个 正 的 小 微 常 数 \Delta x = -\eta*E'(x) ,这里 \eta是一个正的小微常数 Δx=ηE(x)η
根据 Δ x = x n + 1 − x n \Delta x = x_{n+1} - x_{n} Δx=xn+1xn所以 x n + 1 = x n − η ∗ E ′ ( x n ) x_{n+1}=x_{n}-\eta*E'(x_{n}) xn+1=xnηE(xn)
当求得x=xn处的导数时,可以通过上式获得下一个x的取值,使得误差函数E(x)向最小值逼近。

当函数的自变量由一个x,变为多个x0,x1,x2…xn,即X={x0,x1,x2…xn},函数的导数则变为偏导数

误差函数的变化,满足下面的公式: Δ E = ∂ E ∂ x 0 ∗ Δ x 0 + ∂ E ∂ x 1 ∗ Δ x 1 . . . + ∂ E ∂ x n ∗ Δ x n \Delta E = \frac{\partial{E}} {\partial{x_0}}*\Delta{x_0}+ \frac{\partial{E}} {\partial{x_1}}*\Delta{x_1}...+ \frac{\partial{E}} {\partial{x_n}}*\Delta{x_n} ΔE=x0EΔx0+x1EΔx1...+xnEΔxn
Δ E = { ∂ E ∂ x 0 , ∂ E ∂ x 1 . . . ∂ E ∂ x n } ⋅ { Δ x 0 , Δ x 1 . . . Δ x n } \Delta E = \lbrace \frac{\partial{E}} {\partial{x_0}}, \frac{\partial{E}} {\partial{x_1}}...\frac{\partial{E}} {\partial{x_n}}\rbrace \cdot \lbrace \Delta{x_0},\Delta{x_1}...\Delta{x_n}\rbrace ΔE={x0E,x1E...xnE}{Δx0,Δx1...Δxn}
其中
{ ∂ E ∂ x 0 , ∂ E ∂ x 1 . . . ∂ E ∂ x n } 是 E ( X ) 函 数 的 梯 度 G r a d i e n t \lbrace \frac{\partial{E}} {\partial{x_0}}, \frac{\partial{E}} {\partial{x_1}}...\frac{\partial{E}} {\partial{x_n}}\rbrace 是E(X)函数的梯度Gradient {x0E,x1E...xnE}E(X)Gradient
欲使E(X)以最快的方式向最小值逼近,令
X = − η ∗ { ∂ E ∂ x 0 , ∂ E ∂ x 1 . . . ∂ E ∂ x n } X = -\eta* \lbrace \frac{\partial{E}} {\partial{x_0}}, \frac{\partial{E}} {\partial{x_1}}...\frac{\partial{E}} {\partial{x_n}}\rbrace X=η{x0E,x1E...xnE}
X = − η ∗ G r a d i e n t X = -\eta* Gradient X=ηGradient
根据上述公式,梯度下降算法的步骤为:

  1. 任意找到位置作为起点
  2. 计算该点的梯度
  3. 用该点的梯度更新所有自变量,获得下一个位置
  4. 重复2~3步,直到找到最小值为止

在神经网络视角下,η成为学习率,可以看做移动的步长,如何确定学习率,没有明确的标准,只能通过反复试验来寻找恰当的值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值