动态规划【leetcode】

笔记:代码随想录

概述

Dynamic Programming 简称 DP。动态规划是从上一个状态推导当前状态。贪心则和上一个状态没关系。

五个步骤

  1. 确定dp数组以及下标的含义
  2. 确定递推公式
  3. dp数组如何初始化
  4. 确定遍历顺序
  5. 举例推导dp数组

方法

基础问题,背包问题,打家劫舍问题,股票问题,子序列问题

基础问题

1.斐波那契数

2.爬楼梯

3.使用最小花费爬楼梯

4.不同路径

5.不同路径二

6.整数拆分

7.不同的二叉搜索树

背包问题

8.0-1背包理论基础一

二维数组

做动态规划的题目,最好的过程就是自己在纸上举一个例子把对应的dp数组的数值推导一下,然后在动手写代码!

01背包和完全背包最大的不同就是每种物品完全背包有无限件。完全背包可以转化为01背包。

9.0-1背包理论基础二

一维数组(滚动数组)

10.分割等和子集

如果题目给的价值都是正整数那么非0下标都初始化为0就可以了,如果题目给的价值有负数,那么非0下标就要初始化为负无穷。

这样才能让dp数组在递推的过程中取得最大的价值,而不是被初始值覆盖了

dp[j] = max(dp[j], dp[j - nums[i]] + nums[i])

11.最后一块石头的重量二

12.目标和

既然为target,那么就一定有 left组合 - right组合 = target。left + right = sum,而sum是固定的。right = sum - left公式来了, left - (sum - left) = target 推导出 left = (target + sum)/2 。

求组合类问题的公式,都是类似这种:

dp[j] += dp[j - nums[i]]

13.一和零

14.完全背包理论基础

每件物品都有无限个(也就是可以放入背包多次),完全背包和01背包问题唯一不同的地方就是,每种物品有无限件在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!

15.零钱兑换二

如果求组合数就是外层for循环遍历物品,内层for遍历背包

如果求排列数就是外层for遍历背包,内层for循环遍历物品

16.组合总和四

17.爬楼梯

18.零钱兑换

19.完全平方数

20.单词拆分

21.多重背包理论基础

打家劫舍问题

22.打家劫舍

23.打家劫舍二

闭环了,考虑开头是nums[0]以及结尾是nums[0]的情况。

24.打家劫舍三

树形dp

股票问题

25.买卖股票的最佳时机

26.买卖股票的最佳时机二

27.买卖股票的最佳时机三

28.买卖股票的最佳时机四

29.最佳买卖股票时机含冷冻期

30.买卖股票的最佳时机含手续费

可以考虑一下为什么不从持有的时候入手减去手续费

子序列问题

31.最长上升子序列

dp经典问题

class Solution:
    def lengthOfLIS(self, nums: List[int]) -> int:
        dp = [1] * len(nums)
        results = 1

        for i in range(1, len(nums)):
            for j in range(i):
                if nums[i] > nums[j]:
                    dp[i] = max(dp[i], dp[j] + 1)
            results = max(results, dp[i])
        
        return results

32.最长连续递增序列

33.最长重复子数组

34.最长公共子序列

35.不相交的线

36.最大子序和

37.判断子序列

38.不同的子序列

如果是连续序列,可以考虑KMP

39.两个字符串的删除操作

40.编辑距离

41.回文子串

42.最长回文子序列

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值