RuntimeError: Expected a ‘cpu‘ device type for generator but found cuda

本文详细介绍了在使用PyTorch进行深度学习时遇到的RuntimeError:Expectedacpudevicetypeforgeneratorbutfoundcuda错误,该错误源于数据加载器的生成器在CUDA设备上运行而非预期的CPU。提供了三种解决方案,包括修改dataloader源码、禁用数据打乱以及降级PyTorch版本来解决问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

成功解决报错RuntimeError: Expected a ‘cpu’ device type for generator but found cuda



🌳引言🌳

在深度学习领域,使用PyTorch框架进行模型训练和开发时,经常会涉及到数据加载、模型定义、前向传播、反向传播等步骤。在这些步骤中,有时会遇到RuntimeError: Expected a ‘cpu’ device type for generator but found cuda这样的错误。这个错误表明,某个预期在CPU上运行的生成器(generator)实际上在CUDA设备上运行,这通常是由于设备配置不当或代码逻辑错误导致的。本文将深入探讨这个错误的原因,并提供解决方案。

🌳问题描述🌳

pytorch1.11中运行代码报错, 报错信息如下:

RuntimeError: Expected a ‘cpu‘ device type for generator but found
cuda

报错的完整截图如下:

🌳解决方法🌳

报错的内容告诉我们,是pytorch的dataloader部分出了问题,我们先定位使用dataloader的地方,如下图所示:

发现好像没什么问题,就是dataloader的经典使用方法。从报错信息,跳转到pytorch的dataloader源码,即:

发现这里的生成器放进了GPU设备中,而报错很大概率就是因为这条语句(报错给到我们的信息是希望cpu但发现是gpu),因此,这里给出三种解决方案:

解决方案1

将dataloader的中的生成器重新放入cpu设备中,即
代码截图
重新运行代码,报错解决!(这里需要改pytorch的dataloader源码)

解决方案2

从方法1的解决过程可以看出,是dataloader中的RandomSampler类中的代码出现的问题,即:
代码截图
那dataloader哪些功能需要使用RandomSampler?——随机打乱训练集!!!
因此,第二种解决方法便是将shuffle=True改为shuffle=False(这里不需要改pytorch的dataloader源码,只需要在调用dataloader的地方更改)

重新运行代码,顺利解决bug~

解决方案3

调用dataloader的代码在低版本的pytorch中是完全正常的,如果代码的说明文档没有明确说明需要使用pytorch的高版本,那可以考虑使用pytorch版本较低的新的虚拟环境来运行代码


🌳结尾🌳

亲爱的读者,首先感谢抽出宝贵的时间来阅读我们的博客。我们真诚地欢迎您留下评论和意见💬
俗话说,当局者迷,旁观者清。的客观视角对于我们发现博文的不足、提升内容质量起着不可替代的作用。
如果博文给您带来了些许帮助,那么,希望能为我们点个免费的赞👍👍/收藏👇👇您的支持和鼓励👏👏是我们持续创作✍️✍️的动力
我们会持续努力创作✍️✍️,并不断优化博文质量👨‍💻👨‍💻,只为给带来更佳的阅读体验。
如果有任何疑问或建议,请随时在评论区留言,我们将竭诚为你解答~
愿我们共同成长🌱🌳,共享智慧的果实🍎🍏!


万分感谢🙏🙏点赞👍👍、收藏⭐🌟、评论💬🗯️、关注❤️💚~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

高斯小哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值