引言
在深度学习和PyTorch中,数据类型的处理是一个关键环节。我们经常需要应对各种数据类型,包括布尔值(True/False)和浮点数(1.0/0.0)。有时,为了满足特定的计算或操作需求,我们需要将布尔类型的tensor转换为浮点类型或整数类型的tensor。随着编程经验的积累,我们处理此类需求的方式也会不断优化。以下是我不同阶段处理此类需求的代码缩影。
方法1:基于列表生成式
我们可以通过列表生成式
+ if-else
语句实现将布尔类型的tensor转换为浮点类型/整数类型的tensor。
完整代码
import time
import torch
bool_tensor = torch.tensor([True, False, True])
start_time = time.time()
# 统计10w次,比较三种代码的时间复杂度
for _ in range(100000):
# 列表生成式
float_tensor = torch.tensor([1.0 if value else 0.0 for value in bool_tensor])
end_time = time.time()
print(float_tensor, "cost_time: ", end_time - start_time)
运行结果
可以看出,使用列表生成式处理10w次从布尔类型的tensor转换为浮点类型/整数类型的tensor需求,需要大约1.71s。
方法2:基于torch.where()
我们可以通过torch.where()
函数实现将布尔类型的tensor转换为浮点类型/整数类型的tensor。
完整代码
import time
import torch
bool_tensor = torch.tensor([True, False, True])
start_time = time.time()
# 统计10w次,比较三种代码的时间复杂度
for _ in range(100000):
# torch.where
float_tensor = torch.where(bool_tensor, 1.0, 0.0)
end_time = time.time()
print(float_tensor, "cost_time: ", end_time - start_time)
运行结果
可以看出,使用torch.where()
处理10w次从布尔类型的tensor转换为浮点类型/整数类型的tensor需求,需要大约0.78s。
方法3:强制类型转换
在某次偶然的尝试下,我发现可以通过强制类型转换实现将布尔类型的tensor转换为浮点类型/整数类型的tensor。
完整代码
import time
import torch
bool_tensor = torch.tensor([True, False, True])
start_time = time.time()
# 统计10w次,比较三种代码的时间复杂度
for _ in range(100000):
# 类型转换
float_tensor = bool_tensor.float()
end_time = time.time()
print(float_tensor, "cost_time: ", end_time - start_time)
运行结果
可以看出,使用强制类型转换处理10w次从布尔类型的tensor转换为浮点类型/整数类型的tensor需求,仅需要大约0.41s。
比较三种方法
方法 | 执行时间(10w次) |
---|---|
列表生成式 | 1.71s |
torch.where() | 0.78s |
强制类型转换 | 0.41s |
一言以蔽之:强制类型转换真香!!!
结束语
- 亲爱的读者,感谢您花时间阅读我们的博客。我们非常重视您的反馈和意见,因此在这里鼓励您对我们的博客进行评论。
- 您的建议和看法对我们来说非常重要,这有助于我们更好地了解您的需求,并提供更高质量的内容和服务。
- 无论您是喜欢我们的博客还是对其有任何疑问或建议,我们都非常期待您的留言。让我们一起互动,共同进步!谢谢您的支持和参与!
- 我会坚持不懈地创作,并持续优化博文质量,为您提供更好的阅读体验。
- 谢谢您的阅读!