CFD有限体积法1-总流程(学习笔记)

本文介绍了使用TFI法在2D结构化网格上进行有限体积法(FVM)离散处理定常热传导问题的过程。文章详细阐述了控制方程的建立、离散化以及如何通过面积分假设转换为代数方程组,讨论了对流不考虑的情况,并提到了方程的解法,包括直接求解和迭代求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前文:

CFD有限体积结构化2D网格生成TFI法(学习笔记)_觅°的博客-CSDN博客

本文参考文献:

F. Moukalled, L. Mangani, M. Darwish. The finite volume method in computational fluid dynamics. An advanced introduction with Openfoam and Matlab[M]. Chapter 4.
 

        以定常热传导问题为例。一个铜散热片上有一个热源和一个微处理器,如下图所示。

        只考虑热传导,不考虑对流,控制方程为

        空间离散和拓扑关系定义:

        控制方程离散:

        对于每个网格单元,由控制方程(组)获得一个线性方程(组),将各网格参数联系起来。对FVM,控制方程离散首先是在控制体上进行微分方程积分,以获得半离散化方程,之后以特定型线规定参数在网格单元间的变化获得最终积分形式。网格越密,型线选择对最终计算结果影响越小,结果越接近精确解。

根据散度定理

积分式可写作

第一个假设处理:

等价于

 f为控制体各界面中心积分点。上式将面积分假设为通过界面中心的参数通量

 有

 因此

 第二个假设处理:

 上式假设T在F1和C之间呈线性分布。因此有

 同理,对其他界面

 代入积分式中

 整理为

 对每个单元都可以得出以上代数方程,所有单元的代数方程组成该问题的代数方程组,可写作矩阵形式:AT=B

        代数方程组求解:

       代数方程组求解独立于上述离散过程,可分为直接求解和迭代求解。常用迭代求解。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值