前文:
CFD有限体积结构化2D网格生成TFI法(学习笔记)_觅°的博客-CSDN博客
本文参考文献:
F. Moukalled, L. Mangani, M. Darwish. The finite volume method in computational fluid dynamics. An advanced introduction with Openfoam and Matlab[M]. Chapter 4.
以定常热传导问题为例。一个铜散热片上有一个热源和一个微处理器,如下图所示。
只考虑热传导,不考虑对流,控制方程为
空间离散和拓扑关系定义:
控制方程离散:
对于每个网格单元,由控制方程(组)获得一个线性方程(组),将各网格参数联系起来。对FVM,控制方程离散首先是在控制体上进行微分方程积分,以获得半离散化方程,之后以特定型线规定参数在网格单元间的变化获得最终积分形式。网格越密,型线选择对最终计算结果影响越小,结果越接近精确解。
根据散度定理
积分式可写作
第一个假设处理:
等价于
f为控制体各界面中心积分点。上式将面积分假设为通过界面中心的参数通量。
有
因此
第二个假设处理:
上式假设T在F1和C之间呈线性分布。因此有
同理,对其他界面
代入积分式中
整理为
对每个单元都可以得出以上代数方程,所有单元的代数方程组成该问题的代数方程组,可写作矩阵形式:AT=B
代数方程组求解:
代数方程组求解独立于上述离散过程,可分为直接求解和迭代求解。常用迭代求解。