一、登录服务器和Jepyter
- 我在234服务器:账号mcs 密码好像直接可以登陆可能也是mcs
- jepter mcs mcs也有可能是mao的自己试一下 然后确定一下
二、实验代码及保存的文件
3. 我最终的代码都保存在arcface-pytorch-v9中
4. 关于LFWA数据集
不保证正确,差不多是这个样,还得做实验测试一下精度,但是每一个文件都有保存,也都都对应的代码,都没有产出个改动的
- 2021年5月25日补充:保存在v9里的model模型其中v14.3是baseline2的代码,其中只要稍微改一些结构就变成了basline1的代码。再者,在v10中,有一个group_model.baseline.py的代码,可以转换为baseline1和baseline2的代码,通过加载V9中的权重可以跑通,已经测试过了。
- LFWA和Celeba两个数据集使用相同的代码,但是记得预训练权重要修改,celeba数据集不需要预训练权重。
2021年5月21日
重新在celebA数据及上做了实验,目的是吧最后的精度调上来。做实验的目录是v10.所用的数据是两倍的原始数据/VideoRecognition/360/code/FaceAttribute-FAN/data/CelebA/list/train_val_all.txt,用了很多数据增强
batchsize=60。测试就是用原始的测试数据集:VideoRecognition/360/code/FaceAttribute-FAN/data/CelebA/list/test_full.txt。最终的权重以及tensorboard logdir保存在:/data1/mcs/arcface-v10/checkpoints/finetune.vceleb_all和/data1/mcs/arcface-v10/events/finetune.vceleb_all中。最好的权重为187.pth。
5月25日:修改,之前的测试代码有问题,拉姆达2的权重是0.7忘记改了,改成0.1就是最新的结果,所以最终不是91.50是91.54
2021.5.25
继续重新做了实验:
训练数据是所有数据,测试数据是原始数据:
然后并没有用很多数据增强,就用原始的数据增强
保存的权重文件名称是:vceleb_all_noaug,最好的权重为59.batchsize为40