机器学习系列笔记一:Introduction

机器学习系列笔记一:Intro

数据

以鸢尾花的数据集为例:

花萼长度花萼宽度花瓣长度花瓣宽度种类
5.13.21.40.2se(0)
7.03.24.71.4ve(1)
6.33.362.5vi(2)
  • 数据整体叫数据集(data set)

  • 每一行数据称为一个样本(sample)

  • 除最后一列,每一列表达样本的一个特征(feature)

  • i i i 个样本的所有特征集合写作特征向量 X ( i ) X^{(i)} X(i),第 i i i个样本的第 j j j 个特征值写作 X j ( i ) X_{j}^{\left( i \right)} Xj(i)

  • 最后一列,称为标记(label),用向量 y y y表示,第 i i i个样本的标记写作 y ( i ) y^{(i)} y(i)

  • 如果 X ( i ) X^{(i)} X(i) 为列向量,则特征空间可以表示为
    X = [ ( X ( 1 ) ) T ( X ( 2 ) ) T ( X ( 3 ) ) T ⋮ ] X=\left[ \begin{array}{c} \\\left( X^{\left( 1 \right)} \right) ^T \\ \\\left( X^{\left( 2 \right)} \right) ^T \\ \\\left( X^{\left( 3 \right)} \right) ^T \\ \\\vdots \end{array} \right] X=(X(1))T(X(2))T(X(3))T
    从可视化的角度,二维(在高维空间同理)的特征空间如下所示:在这里插入图片描述
    其中红色表示一类,而蓝色表示另一类,从此我们可以看出分类任务的本质就是在特征空间进行切分。

基本任务

1. 分类

  • 二分类任务:
    比如猫狗分类(猫/狗)、垃圾邮件判断(是/否)、银行风险判定(有/无)

  • 多分类任务

    • 手写数字识别
    • 图像识别
    • 银行对客户的风险评级
  • 可转换为多分类问题的任务

    • 围棋
    • 自动驾驶(设置级别)
  • 如何处理分类任务

    • 一些算法只支持二分类的任务
    • 但是多分类的任务可以转换为二分类的任务
    • 有一些算法天然可以完成多分类任务
  • 多标签分类
    在这里插入图片描述
    对图片中的人物以及其他物品都进行划分。

2. 回归

针对以波士顿房价数据为例的连续数据,机器学习将之处理为回归任务

房屋面积(平方米)房屋年龄(年)卧室数量(间)最近地铁站距离(km)价格(W)
803110300
120835500
2005412700
  • 结果是一个连续数字的值而非一个类别
    • 房屋价格
    • 市场分析
    • 学生成绩
    • 股票价格
  • 如何处理回顾任务
    • 有一些算法可以解决回归问题
    • 在一些情况下,也可以将回归问题处理为分类问题,通过分类问题的算法来解决
      • 无人驾驶(划分操作级别)
      • 学生成绩(划分成绩的等级)

机器学习的工作流程

在这里插入图片描述

  • 数据集
    • 特征空间
    • 标签向量
  • 机器学习算法
    • 处理分类的算法
    • 处理回归的算法
  • 模型
    • 分类模型
    • 回归模型
    • 核心参数
      • 权重矩阵W
      • 偏置量b

机器学习算法的传统分类

监督学习

给机器的训练数据拥有“标记”或者“答案”,则称为监督式学习。 在这里插入图片描述

监督学习算法

  • K近邻
  • 线性回归和多项式回归
  • 逻辑回归
  • SVM
  • 决策树和随机森林

无监督学习

给机器训练的数据是没有任何标记或"答案",称之为非/无监督学习 在这里插入图片描述

应用场景

  • 对没有标记的数据进行分类-聚类分析

  • 对数据进行降维处理

    • 特征提取:抽取有用特征,抛弃无用特征,比如信用评级与人的胖瘦无关
    • 特征压缩:PCA,可以理解为某种降维打击
  • 异常检测
    在这里插入图片描述

半监督学习

一部分数据有“ 标记”或者“答案”,而另一部分没有。

常规处理方案

  • 先使用无监督学习手段对数据进行处理(将那部分没有标记的数据打上标记)
  • 然后用监督学习手段做模型的训练和预测。

增强/强化学习DRL

根据周围环境的情况,采取行动,根据采取行动的结果,学习行动方式。这样的机器学习方法称之为增强学习。 在这里插入图片描述
代表算法

  • Q-Learning
  • Sarsa
  • DQN
  • Policy Grandients
  • Actor-Critic
  • DDPG
  • AC3

机器学习算法的其他分类方式

批量学习(离线学习)/在线学习

批量学习(离线学习)

在这里插入图片描述

模型只会被离线时输入的学习资料优化,当模型投入生产环境时,后续在线输入的大量数据不会再作为该模型的学习资料。

  • 优点:简单

  • 问题:适应环境变化的能力不强

    • 解决方法:定时重新批量学习(仅限于环境变化缓慢的场景)
  • 缺点:每次重新批量学习都会对CPU/GPU造成极大的开销,同时会产生时间的开销。
    在某些环境变化非常块的情景,重新批量学习是没有意义的。

在线学习

在这里插入图片描述

  • 优点:
    • 及时反映新的环境变化
    • 适用于数据量巨大,完全无法批量学习的环境
  • 问题:新的数据(不正常的数据)可能带来不好的变化
    • 解决方案:加强对数据的监控-无监督式学习之异常检测

参数学习/非参数学习

参数学习

假设可以最大程度地简化学习过程,与此同时也限制可以学习到是什么,这种算法简化成一个已知的函数形式,即通过固定数目的参数来拟合数据的算法。

特点: 一旦模型学习到了参数,就不再需要原有的数据集。

比如房价预测就是参数学习的一种,我们试图找到房屋各个特征对房价结果的影响程度,而这些影响程度就是参数: 在这里插入图片描述

参数学习算法包括两个步骤:

  • 选择一种目标函数的形式
  • 从训练数据中学习目标函数的系数

参数学习算法的一些常见例子包括:

  • Logistic Regression
  • LDA(线性判别分析)
  • 感知机
  • 朴素贝叶斯
  • 简单的神经网络

参数机器学习算法的优点:

  • 简单:这些算法很容易理解和解释结果
  • 快速:参数模型可以很快从数据中学习
  • 少量的数据:它们不需要太多的训练数据,甚至可以很好地拟合有缺陷的数

参数机器学习算法的局限性:

  • 约束:这些算法选择一种函数形式高度低限制模型本身
  • 有限的复杂性:这种算法可能更适合简单的问题
  • 不适合:在实践中,这些方法不太可能匹配潜在的目标(映射)函数
非参数学习

特点:不对模型进行过多假设,将模型视作一个黑盒,非参数不等于没参数。通过不做假设,它们可以从训练数据中自由地学习任何函数形式,即参数数量会随着训练样本数量的增长的算法。

非参数学习算法的一些常见例子包括:

  • KNN
  • 决策树,比如CART和C4.5
  • SVM

非参数机器学习算法的优点:

  • 灵活性:拟合大量的不同函数形式
  • 能力:关于潜在的函数不需要假设(或者若假设)
  • 性能:可以得到用于预测的高性能模型

非参数机器学习算法的局限性:

  • 更多的数据:需要更多的训练数据用于估计目标函数
  • :训练很慢,因为它们常常需要训练更多的参数
  • 过拟合:更多的过度拟合训练数据风险,同时它更难解释为什么要做出的具体预测

局部加权线性回归其实是一个非参数学习算法(non-parametric learning algorithm);

线性回归则是一个参数学习算法(parametric learning algorithm),因为它的参数是固定不变的,而局部加权线性回归的参数是随着预测点的不同而不同。

  • 更多的数据:需要更多的训练数据用于估计目标函数
  • :训练很慢,因为它们常常需要训练更多的参数
  • 过拟合:更多的过度拟合训练数据风险,同时它更难解释为什么要做出的具体预测

局部加权线性回归其实是一个非参数学习算法(non-parametric learning algorithm);

线性回归则是一个参数学习算法(parametric learning algorithm),因为它的参数是固定不变的,而局部加权线性回归的参数是随着预测点的不同而不同。

由于每次预测时都只看预测点附近的实例点,因此每一次预测都要重新运行一遍算法,得出一个组参数值,因此其计算代价很大。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值