人脸识别项目

本文介绍了人脸识别技术,包括1:1验证和1:N识别的应用场景,以及传统方法和深度学习方法的比较。详细阐述了人脸识别项目流程,涵盖图像采集、预处理、建模和测试识别,特别提到了Mtcnn算法在人脸检测中的应用。
摘要由CSDN通过智能技术生成

人脸识别

人脸识别技术是基于人的脸部特征信息进行身份识别的一种生物识别技术。

识别模式

1:1(人脸验证):取一张人脸图像与特定的某个人像数据对比,验证是否匹配。证明你就是你。
应用场景:高铁验票,支付宝刷脸支付
(铝合金交了高铁票,系统根据高铁票找到了铝合金在高铁公司留下的照片,与在高铁站上的铝合金进行人脸匹配来验票)
1:N(人脸识别):取一张人脸图像重海量数据库中找到与这张图像相符的图像。找出我是谁。
应用场景:疑犯追踪,小区门禁,考勤签到
(铝合金录入人脸进了校区门禁系统,开门是摄像头提取了铝合金的人脸跟数据库里录入的业主头像一一进行匹配,设置一个相似度阈值,大于多少相似度则判定为同一个人并开门)

识别方法

传统方法

需要专家知识,通过对脸部信息的理解提取面部特征(眼耳口鼻)之间的几何关系(距离、面积、角度)成多个特征脸,然后线性组合将多个特征脸组合成一个特征脸空间的一个向量,识别时做一变向量距离运算即可。

深度学习方法

不需要专业知识,通过卷积神经网络对脸部特征进行自动提取,其权值共享减少了数据量,降低了训练模型的成本,所以在图像识别领域应用十分广泛。

人脸识别项目流程

  1. 图像采集(摄像头采集当前识别或者录入人的图像,通过Mtcnn算法(是
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值