思路:
总共有ans = POW(n,k)中可能,然后排出所有不可能的情况,每次序列中全部为红色或者只有一个点
的情况就不用考虑,所以可以用红色边建立连通图,然后枚举每一连通分量的情况tmp,用ans-tmp就是答案。
---------------------------------------分割线---------------------------------------------------------------------------------------------------
当时我就是这么想的,然后答案就是卡在第8的点上,我怎么也没想到还有负数这种情况W( ̄_ ̄)W,
然后看了标程之后发现ans = (ans+MOD)%MOD,就对了,这次也算get到了,下次一定不会犯这样的错误了。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
typedef long long LL;
const int maxn = 200200;
const LL MOD = 1e9+7;
LL fa[maxn]={0},vis[maxn]={0};
LL f(LL x){
if(fa[x]==0) return x;
else return fa[x]=f(fa[x]);
}
void Merge(LL x,LL y){
LL t1 = f(x),t2 = f(y);
if(t1!=t2){
fa[t2] = t1;
}
}
LL POW(LL a,LL b){
LL ret = 1;
while(b){
if(b&1LL) ret = ret*a%MOD;
a = a*a%MOD;
b = b/2;
}
return ret;
}
int main(void)
{
LL n,k,i,j,x,y,z;
scanf("%lld%lld",&n,&k);
for(i=0;i<n-1;i++){
scanf("%lld%lld%lld",&x,&y,&z);
if(z==0) Merge(x,y);
}
LL ans = POW(n,k)%MOD;
for(i=1;i<=n;i++){
vis[f(i)]++;
}
for(i=1;i<=n;i++)
if(vis[i]>0){
ans = (ans%MOD-POW(vis[i],k)%MOD)%MOD;
}
printf("%lld\n",(ans+MOD)%MOD);
return 0;
}