一、基本概念
1、线性基:
在平面中有x向量,y向量两个方向的向量,这两个向量是线性无关组,就是可以用着两个向量组成其他任意向量。
线性基就是类似于这个东西,将一组数的集合按照二进制分解为一些基底,然后用这些数字去组成其他任何的数字。
2、线性基的性质:
(1)线性基的任意一个数都可以由其他的数异或和得到;
(2)线性基里的任意一些数字的异或和不为0;
(3)线性基里的个数唯一,并且个数最小;
PS:就是相当于将这些数字分解为一些基底数字的集合{e1,e2,……en},这些数字组成的数字都在这个集合中。
二、模板
LL a[120]={0},n,cnt = 0;
void Ins(LL val){ //插入
for(int i=63;i>=0;i--)
if((val>>i)&1){
if(!a[i]){
a[i] = val;
break;
}
else val ^= a[i];
}
}
void Work(){ //预处理
for(int i=63;i>=0;i--){
for(int j=i+1;j<=63;j++)
if((a[j]>>i)&1LL){
a[j] ^= a[i];
}
}
cnt = 0;
for(int i=0;i<=63;i++)
if(a[i]) a[cnt++] = a[i];
}
LL Max(){ //查找最大值
LL ans = 0;
for(int i=0;i<=63;i++)
if((ans^a[i])>ans) ans = ans^a[i];
return ans;
}
LL Min(){ //最小值
LL ans = 0;
for(int i=0;i<63;i++)
if((ans^a[i])<ans) ans = ans^a[i];
return ans;
}
LL Query(LL k){ //查询第k大
if(cnt!=n) k--; //存在0的情况
if(k>=(1LL<<cnt)) return -1;
LL ans = 0;
for(int i=0;i<=63;i++)
if((k>>i)&1LL) ans ^= a[i];
return ans;
}