45. 跳跃游戏 II

https://leetcode.cn/problems/jump-game-ii/

题目要求

给定一个长度为 n0 索引整数数组 nums。初始位置为 nums[0]

每个元素 nums[i] 表示从索引 i 向前跳转的最大长度。换句话说,如果你在 nums[i] 处,你可以跳转到任意 nums[i + j] 处:

  • 0 <= j <= nums[i]
  • i + j < n

返回到达 nums[n - 1]的最小跳跃次数。生成的测试用例可以到达 nums[n - 1]

贪心

class Solution {
    public int jump(int[] nums) {
        int n = nums.length;
        // 起始位置不用进行跳跃
        if (n == 1) return 0;
        int curRange = 0;   // 记录当前覆盖最远距离下标
        int nextRange = 0;  // 记录下一步的额最远覆盖距离下标
        int res = 0;
        for (int i = 0; i < n; i++) {
            nextRange = Math.max(nextRange, i + nums[i]);
            if (i == curRange) {
                if (curRange < n - 1) {     // 如果当前覆盖最远距离下标不是终点
                    res++;                  // 需要走下一步
                    curRange = nextRange;   // 更新当前覆盖最远距离下标
                    if (nextRange >= n - 1) break;// 下一步的覆盖范围已经可以达到终点,结束循环
                } else break; // 当前覆盖最远距到达集合终点,不用做res++操作了,直接结束
            }
        }
        return res;
    }
}
  • 要从覆盖范围出发,不管怎么跳,覆盖范围内一定是可以跳到的,以最小的步数增加覆盖范围,覆盖范围一旦覆盖了终点,得到的就是最小步数!
  • 移动下标达到了当前覆盖的最远距离下标时,步数就要加一,来增加覆盖距离。最后的步数就是最少步数。这里还是有个特殊情况需要考虑,当移动下标达到了当前覆盖的最远距离下标时
    • 如果当前覆盖最远距离下标不是是集合终点,步数就加一,还需要继续走。
    • 如果当前覆盖最远距离下标就是是集合终点,步数不用加一,因为不能再往后走了。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值