SSA-GAN:Text to Image Generation with Semantic-Spatial Aware GAN

1 研究目的

现有基于生成对抗网络(GANs)的文本到图像生成模型存在的两个主要局限性:

1)整体批量归一化方法在整个图像特征图上平等应用,忽略了局部语义

2)文本编码器在训练过程中保持固定

为了解决这些局限性,作者提出了一种名为语义空间感知GAN(SSA-GAN)的新框架,该框架采用端到端的方式训练,使得文本编码器能够获取更好的文本信息。具体来说,作者引入了一种新颖的语义空间感知卷积网络(SSACN),具有以下功能:

1)根据文本学习语义自适应变换以有效融合文本特征和图像特征

2)以弱监督方式学习一个掩码图,依赖于当前的文本-图像融合过程以指导变换空间。

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值