GPT是如何工作的?应用场景有哪些?

GPT通过预训练和微调阶段学习语言规律,利用Transformer解码器预测上下文。其应用场景包括自动文本生成、语义理解、自然语言处理工具及数学、代码解答等,广泛用于AI助手、客服系统等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

你可能听说过GPT这个词,它是一种人工智能技术,可以生成各种各样的文本,比如小说、诗歌、新闻、对话等。GPT的全称是 Generative Pre-Training,意思是生成式的预训练。那么,它是如何工作的呢?它能做什么呢?本文将为你简单介绍一下GPT的原理和应用。

GPT的原理可以分为两个阶段:预训练和微调。

预训练阶段,GPT利用大量未标注的语料(比如网上的文章、书籍、社交媒体等)来训练一个语言模型。语言模型的作用是根据给定的上文,预测下一个词的概率分布。比如,给定“我想看陈赫演的爱”,语言模型可能会预测“情”字的概率较高,“乐”字的概率略低,“莲”字的概率也较低。这样,语言模型就可以学习到语言的规律和知识。

GPT使用了多层Transformer解码器作为语言模型的网络结构。Transformer是一种基于自注意力机制的神经网络模型,可以有效地处理序列数据。解码器是Transformer中负责生成输出序列的部分。GPT通过不断调整网络参数,使得语言模型在给定上文的情况下对于下一个词预测的准确率越来越高。

微调阶段,GPT对预训练好的语言模型进行微改,将其迁移到各种有监督的NLP任务,并对参数进行fine-tuning。有监督的NLP任务指的是需要标注数据(比如问题和答案、句子和情感等)来进行训练和评估的任务。fine-tuning指的是在保留预训练模型参数的基础上,根据特定任务的数据进行微小的调整。

GPT通过对输入做一些变换(input transformation),使得不同格式的输入都转化为一个或多个序列,保持预训练语言模型的输入形式不变。比如,句子分类任务,直接在句子首尾加上<s>和<e>符号,形成一个

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术小张zz

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值