视觉SLAM
Manii
视觉slam与vio
展开
-
视觉SLAM——两视图对极几何 本质矩阵 基础矩阵 单应矩阵 三角测量
本博客主要为学习《视觉SLAM十四讲》第7讲第3、4节、《多视图几何》第二篇双视图几何、《计算机视觉-算法与应用》第7章等其他相关SLAM内容的总结与整理。本博客主要讨论一下内容:1、对极几何的构建,F、E矩阵的推导、性质与求解;2、由E恢复Rt,三角测量;3、单应性,单应矩阵H的求解;4、F、E、H矩阵的适用性讨论。在特征匹配后,得到了特征点之间的关系,如果是两张图像匹配,可通过对极几何得到2D-2D之间的关系。原创 2019-03-05 16:55:59 · 3496 阅读 · 2 评论 -
视觉SLAM——边缘检测 线段检测 Harris角点检测
本博客为主要学习《计算机视觉——算法与应用》第4章 特征检测与匹配相关知识点的总结与整理。主要内容包括:1、边缘检测算法,常用边缘检测算子 2、直线检测,Hough变换 3、Harris角点检测原创 2019-06-17 17:28:52 · 2857 阅读 · 0 评论 -
视觉SLAM——针孔相机模型 相机标定原理 双目相机模型 深度相机对比
前言本博客为主要学习《视觉SLAM十四讲》第5讲、《机器人学的状态估计》第6章6.4.1透视相机、《多视图几何》第5章摄像头模型等SLAM内容的总结与整理。主要包括:1、针孔相机模型、相机畸变、相机标定2、双目相机模型、RGBD相机原理2、双目相机与RGBD相机对比1、单目相机模型1.1 针孔相机模型1.2 相机畸变1.3 相机标定(张正友标定)1.4 鱼眼相机模型2、立体相...原创 2019-05-31 15:30:51 · 3413 阅读 · 0 评论 -
视觉SLAM——二维三维几何、三维空间刚体变换
主要包括: 1、点、向量、坐标系、直线、平面等几何学基础 2、旋转矩阵、角轴、欧拉角、四元数等表示坐标系旋转的方法,罗德里格斯公式的证明,四元数左乘右乘、导数的推导3、2D、3D空间的欧式、相似、仿射、射影变换性质原创 2019-05-10 21:47:39 · 2747 阅读 · 1 评论 -
视觉SLAM——OpenCV之Mat结构详解 数据成员和构造函数 创建Mat方法 遍历Mat方法
OpenCV2加入了一个c++接口,使用Mat类数据结构,可以实现自动内存管理,且扩展性大大提高。Mat是一个类,由两个数据部分组成:矩阵头(包含矩阵尺寸、存储方法、存储地址等)和一个指向存储所有像素值矩阵的指针。Mat类最重要的一点是浅拷贝和深拷贝问题。原创 2019-03-25 22:20:35 · 1268 阅读 · 0 评论 -
视觉SLAM中的数学——外点处理:鲁棒核函数 RANSAC方法
前言本博客主要为学习《视觉SLAM十四讲》、《计算机视觉-算法与应用》第6章基于特征的配准 《机器人学中的状态估计》第5章偏差、匹配和外点 等其他相关SLAM内容的总结与整理。外点传感器测量值可能会受多种因素干扰而不可靠,同时特征匹配也会存在误匹配的情况,如果不正确地检测并剔除他们,视觉SLAM中的很多算法(如计算本质矩阵、三角测量、PNP等)将会失败。我们将非常不可能的测量值(根据测量模...原创 2019-03-15 09:41:22 · 7130 阅读 · 2 评论 -
视觉SLAM学习笔记——目录与参考
对SLAM学习内容进行总结和整理,对视觉SLAM十四讲进行整理、解释和补充。原创 2019-07-02 15:13:38 · 2020 阅读 · 3 评论 -
视觉SLAM——特征点法与直接法对比以及主流开源方案对比 ORB LSD SVO DSO
单目视觉SLAM可以根据其前端视觉里程计或是后端优化的具体实现算法进行分类:前端可以分为特征点法与直接法,后端可以分为基于滤波器和基于非线性优化。其中在后端上目前已经公认基于非线性优化的方法在同等计算量的情况下,比滤波器能取得更好的结果。而前端的两种方法则各有优劣。本文将具体分析直接法相较于特征点法的优劣处,并具体介绍目前主流的开源方案,以供大家参考。原创 2019-01-14 22:46:59 · 14907 阅读 · 1 评论 -
视觉SLAM——概述 算法框架 SLAM与SFM的区别
SLAM是Simultaneous Location and Mapping,同时定位与地图构建。是指搭载特定传感器的主体,在没有环境先验信息的情况下,于运动过程中建立环境的模型,同时估计自己的运动。目的是解决自主机器人“定位”和“建图”两个问题。同时要求能够实时地,没有先验知识地进行。SLAM问题的本质是对主体自身(位姿)和周围环境空间(点云)的不确定性的估计。原创 2019-02-27 20:02:56 · 8197 阅读 · 0 评论 -
视觉SLAM中的数学——解方程AX=b与矩阵分解:奇异值分解(SVD分解) 特征值分解 QR分解 三角分解 LLT分解
本博客主要介绍在SLAM问题中常常出现的一些线性代数相关的知识,重点是如何采用矩阵分解的方法,求解线性方程组AX=B。主要参考了《计算机视觉——算法与应用》附录A以及Eigen库的方法。本博客可能不会对分解讲的特别深入,主要是想弄清楚各个分解的条件、分解结果以及应用(或特点)。并在最后探讨一下线性最小二乘问题。包括:1、三角分解(LU分解)2、QR分解3、特征值分解4、奇异值分解(SVD分解)5、LDLT分解6、LLT分解(Cholesky分解)原创 2019-07-19 16:10:23 · 7699 阅读 · 3 评论