实时流式处理架构:Kafka、Flink 和 Pinot 的技术你会用吗?

实时流式处理架构旨在不断提取、处理和分析数据,从而实现近乎实时的决策和洞察。它们需要具有低延迟、处理高吞吐量数据量,并在发生故障时具有容错能力。该领域的一些挑战包括:

  • 读取 – 以高吞吐量从各种数据源、格式和结构中提取,即使在高容量数据流爆发期间也是如此

  • 处理 – 确保精确地处理一次(且只处理一次)语义,同时以可扩展和容错的方式处理状态计算、乱序事件和延迟数据到达等复杂性

  • 实时分析 – 对从流源持续提取和处理的新数据实现低延迟查询响应,而不会影响数据完整性或一致性

单个技术组件很难满足所有要求。所以实时流式处理架构一般由多个协同工作的专用工具组成。

Apache Kafka、Flink 和 Pinot 简介

让我们深入了解一下 Apache Kafka、Flink 和 Pinot 的概述,这些核心技术为实时流式处理系统提供支持。

Apache Kafka

Apache Kafka 是一个分布式流式处理平台,充当实时数据管道的中枢神经系统。Kafka 的核心是围绕发布-订阅架构构建的,其中创建者将记录发送到主题,使用者订阅这些主题以处理记录。

Kafka 架构的关键组件包括:

  • 代理是存储数据并为客户端提供服务的服务器。

  • 主题是记录发送到的类别。

  • 分区是用于并行处理和负载平衡的主题划分。

  • 使用者组使多个使用者能够有效地协调和处理记录。

Kafka 是各行各业实时数据处理和事件流的理想选择,其主要功能包括:

  • 高吞吐量

  • 低延迟

  • 容错

  • 耐久性

  • 水平可扩展性

Apache Flink

Apache Flink 是一个开源流处理框架,旨在对无界和有界数据流执行有状态计算。它的架构围绕分布式流式数据流引擎展开,确保应用程序的高效和容错执行。

Flink 的主要功能包括:

  • 支持流式和批处理

  • 通过状态快照和恢复实现容错能力

  • 事件时间处理

  • 高级窗口功能

Flink 与各种数据源和接收器集成,是 Flink 处理的输入数据流,而接收器是 Flink 输出处理数据的目的地。支持的 Flink 源包括 Apache Kafka 等消息代理、HDFS 和 S3 等分布式文件系统、数据库和其他流数据系统。同样,Flink 可以将数据输出到各种 sink,包括关系数据库、NoSQL 数据库和数据湖。

Apache Pinot

Apache Pinot 是一种实时分布式在线分析处理 (OLAP) 数据存储,专为对大规模数据流进行低延迟分析而设计。Pinot 的架构旨在高效处理批处理和流数据,并提供即时查询响应。Pinot 擅长对从 Kafka 等流式源提取的快速

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清风孤客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值