知识点 - 生成树计数
解决问题类型:
求一个无向图的所有生成树的方案数
复杂度:
O ( N 3 ) O(N^3) O(N3)
实现
新的方法介绍
下面我们介绍一种新的方法—— M a t r i x − T r e e Matrix-Tree Matrix−Tree定理( K i r c h h o f f Kirchhoff Kirchhoff矩阵-树定理)。 M a t r i x − T r e e Matrix-Tree Matrix−Tree定理是解决生成树计数问题最有力的武器之一。它首先于1847年被 K i r c h h o f f Kirchhoff Kirchhoff证明。在介绍定理之前,我们首先明确几个概念:
1、 G G G的度数矩阵 D [ G ] D[G] D[G]是一个 n ∗ n n*n n∗n的矩阵,并且满足:当 i ≠ j i≠j i̸=j时, d i j = 0 d_{ij}=0 dij=0;当 i = j i=j i=j时, d i j d_{ij} dij等于 v i vi vi的度数。
2、 G G G的邻接矩阵 A [ G ] A[G] A[G]也是一个 n ∗ n n*n n∗n的矩阵, 并且满足:如果 v i v_i vi、 v j v_j vj之间有边直接相连,则 a i j = 1 a_{ij}=1 aij=1,否则为0。
我们定义G的 K i r c h h o f f Kirchhoff Kirchhoff矩阵(也称为拉普拉斯算子) C [ G ] C[G] C[G]为 C [ G ] = D [ G ] − A [ G ] C[G]=D[G]-A[G] C[G]=D[G]−A[G],则 M a t r i x − T r e e Matrix-Tree Matrix−Tree定理可以描述为: G G G的所有不同的生成树的个数等于其 K i r c h h o f f Kirchhoff Kirchhoff矩阵 C [ G ] C[G] C[G]任何一个 n − 1 n-1 n−1阶主子式的行列式的绝对值。所谓 n − 1 n-1 n−1阶主子式,就是对于 r ( 1 ≤ r ≤ n ) r(1≤r≤n) r(1≤r≤n),将 C [ G ] C[G] C[G]的第r行、第r列同时去掉后得到的新矩阵,用 C r [ G ] Cr[G] Cr[G]表示。
生成树计数
算法步骤:
1、 构建拉普拉斯矩阵
Matrix[i][j] =
degree(i) , i==j
-1 , i-j有边
0 , 其他情况
2、 去掉第r行,第r列(r任意)
3、 计算矩阵的行列式
例题
题目:SPOJ104(Highways)
题目大意:
*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;
*需要有选择的修建一些高速公路,从而组成一个交通网络;
*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;
input: output:
4 8
4 5 1
3 4 1
4 2 3
2 3
1 2
1 32 1
2 11 0
3 3
1 2
2 3
3 1
代码
#include<bits/stdc++.h>
using namespace std;
const int N=15;
typedef long long LL;
int degree[N];
LL C[N][N];
LL det(LL a[][N],int n){
LL ret=1;
for(int i=1; i<n; i++){
for(int j=i+1; j<n; j++)
while(a[j][i]){
LL t=a[i][i]/a[j][i];
for(int k=i; k<n; k++)
a[i][k]=(a[i][k]-a[j][k]*t);
for(int k=i; k<n; k++)
swap(a[i][k],a[j][k]);
ret=-ret;
}
if(a[i][i]==0)return 0;
ret=ret*a[i][i];
}
if(ret<0)ret=-ret;
return ret;
}
int main(){
int tcase;cin>>tcase;
while(tcase--){
memset(degree,0,sizeof(degree));
memset(C,0,sizeof(C));
int n,m,u,v;
scanf("%d%d",&n,&m);
while(m--){
scanf("%d%d",&u,&v);
u--;v--;
C[u][v]=C[v][u]=-1;
degree[u]++;
degree[v]++;
}
for(int i=0; i<n; ++i)
C[i][i]=degree[i];
printf("%lld\n",det(C,n));
}
return 0;
}
生成树的计数--Matrix-Tree定理
题目:SPOJ104(Highways)
题目大意:
*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;
*需要有选择的修建一些高速公路,从而组成一个交通网络;
*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;
input: output:
4 8
4 5 1
3 4 1
4 2 3
2 3
1 2
1 3
2 1
2 1
1 0
3 3
1 2
2 3
3 1