知识点 - 生成树计数

本文介绍了一种使用Matrix-Tree定理(Kirchhoff矩阵-树定理)来解决生成树计数问题的方法。通过构建图的拉普拉斯矩阵,去除一行一列,计算剩余矩阵的行列式,即可得到生成树的数量。具体应用实例见SPOJ104(Highways)题解。
摘要由CSDN通过智能技术生成

知识点 - 生成树计数

解决问题类型:

求一个无向图的所有生成树的方案数

复杂度:

O ( N 3 ) O(N^3) O(N3)

实现

新的方法介绍

下面我们介绍一种新的方法—— M a t r i x − T r e e Matrix-Tree MatrixTree定理( K i r c h h o f f Kirchhoff Kirchhoff矩阵-树定理)。 M a t r i x − T r e e Matrix-Tree MatrixTree定理是解决生成树计数问题最有力的武器之一。它首先于1847年被 K i r c h h o f f Kirchhoff Kirchhoff证明。在介绍定理之前,我们首先明确几个概念:

1、 G G G的度数矩阵 D [ G ] D[G] D[G]是一个 n ∗ n n*n nn的矩阵,并且满足:当 i ≠ j i≠j i̸=j时, d i j = 0 d_{ij}=0 dij=0;当 i = j i=j i=j时, d i j d_{ij} dij等于 v i vi vi的度数。

2、 G G G的邻接矩阵 A [ G ] A[G] A[G]也是一个 n ∗ n n*n nn的矩阵, 并且满足:如果 v i v_i vi v j v_j vj之间有边直接相连,则 a i j = 1 a_{ij}=1 aij=1,否则为0。

我们定义G的 K i r c h h o f f Kirchhoff Kirchhoff矩阵(也称为拉普拉斯算子) C [ G ] C[G] C[G] C [ G ] = D [ G ] − A [ G ] C[G]=D[G]-A[G] C[G]=D[G]A[G],则 M a t r i x − T r e e Matrix-Tree MatrixTree定理可以描述为: G G G的所有不同的生成树的个数等于其 K i r c h h o f f Kirchhoff Kirchhoff矩阵 C [ G ] C[G] C[G]任何一个 n − 1 n-1 n1阶主子式的行列式的绝对值。所谓 n − 1 n-1 n1阶主子式,就是对于 r ( 1 ≤ r ≤ n ) r(1≤r≤n) r(1rn),将 C [ G ] C[G] C[G]的第r行、第r列同时去掉后得到的新矩阵,用 C r [ G ] ​ Cr[G]​ Cr[G]表示。

生成树计数

算法步骤:

​ 1、 构建拉普拉斯矩阵

 Matrix[i][j] =
 degree(i) , i==j
		-1 , i-j有边
         0 , 其他情况

​ 2、 去掉第r行,第r列(r任意)

​ 3、 计算矩阵的行列式

例题

题目:SPOJ104(Highways)
题目大意:
*一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路;
*需要有选择的修建一些高速公路,从而组成一个交通网络;
*计算有多少种方案,使得任意两座城市之间恰好只有一条路径;

input: output:
4 8
4 5 1
3 4 1
4 2 3
2 3
1 2
1 3

2 1
2 1

1 0

3 3
1 2
2 3
3 1

代码

#include<bits/stdc++.h>
using namespace std;
const int N=15;
typedef long long LL;
int degree[N];
LL C[N][N];
LL det(LL a[][N],int n){
    LL ret=1;
    for(int i=1; i<n; i++){
        for(int j=i+1; j<n; j++)
            while(a[j][i]){
                LL t=a[i][i]/a[j][i];
                for(int k=i; k<n; k++)
                    a[i][k]=(a[i][k]-a[j][k]*t);
                for(int k=i; k<n; k++)
                    swap(a[i][k],a[j][k]);
                ret=-ret;
            }
        if(a[i][i]==0)return 0;
        ret=ret*a[i][i];
    }
    if(ret<0)ret=-ret;
    return ret;
}
int main(){
    int tcase;cin>>tcase;
    while(tcase--){
        memset(degree,0,sizeof(degree));
        memset(C,0,sizeof(C));
        int n,m,u,v;
        scanf("%d%d",&n,&m);
        while(m--){
            scanf("%d%d",&u,&v);
            u--;v--;
            C[u][v]=C[v][u]=-1;
            degree[u]++;
            degree[v]++;
        }
        for(int i=0; i<n; ++i)
            C[i][i]=degree[i];
        printf("%lld\n",det(C,n));
    }
    return 0;
}
生成树的计数--Matrix-Tree定理
 
题目:SPOJ104(Highways) 
题目大意: 
 *一个有n座城市的组成国家,城市1至n编号,其中一些城市之间可以修建高速公路; 
 *需要有选择的修建一些高速公路,从而组成一个交通网络; 
 *计算有多少种方案,使得任意两座城市之间恰好只有一条路径;
input:		 output:
4			8
4 5			1
3 4			1
4 2			3
2 3
1 2
1 3
 
2 1
2 1
 
1 0
 
3 3
1 2
2 3
3 1
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值