Description
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。
Input
第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。
Output
输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。
Sample Input
4 6
1 2 1
1 3 1
1 4 1
2 3 2
2 4 1
3 4 1
Sample Output
8
在一个连通图中不同的最小生成树所使用的每个不同边权次数都是相等的。所以先跑一次求出每个边权使用的次数,然后用dfs搜索每种边权使用的可能最后相乘。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
#define ll long long
const int maxm = 1005;
const int mod = 31011;
struct node
{
int u, v, w;
bool operator<(const node &r)const
{
return w < r.w;
}
};
node a[maxm];
typedef struct
{
int l, r, x;
}H;
H b[maxm];
int p[105], len = 0;
ll ans = 1, rev = 0;
int find(int k);
void dfs(int id, int now, int k);
int main()
{
int n, i, j, k, sum = 0, m;
scanf("%d%d", &n, &m);
for (i = 1;i <= n;i++)
p[i] = i;
for (i = 1;i <= m;i++)
scanf("%d%d%d", &a[i].u, &a[i].v, &a[i].w);
sort(a + 1, a + 1 + m);
for (i = 1;i <= m;i++)
{
if (a[i].w != a[i - 1].w) { b[len].r = i - 1;b[++len].l = i; }
int t1 = find(a[i].u), t2 = find(a[i].v);
if (t1 != t2)
{
p[t1] = t2;
b[len].x++;
sum++;
}
}
b[len].r = m;
if (sum != n - 1) { printf("0\n");return 0; }
for (i = 1;i <= n;i++)
p[i] = i;
for (i = 1;i <= len;i++)
{
rev = 0;
dfs(i, b[i].l, 0);
ans = (ans*rev) % mod;
for (j = b[i].l;j <= b[i].r;j++)
{
int t1 = find(a[j].u), t2 = find(a[j].v);
if (t1 != t2)
p[t1] = t2;
}
}
printf("%lld\n", ans);
return 0;
}
int find(int k)
{
if (p[k] == k)
return k;
return find(p[k]);
}
void dfs(int id, int now, int k)
{
if (now == b[id].r + 1)
{
if (k == b[id].x)
rev++;
return;
}
int t1 = find(a[now].u), t2 = find(a[now].v);
if (t1 != t2)
{
p[t1] = t2;
dfs(id, now + 1, k + 1);
p[t1] = t1;
p[t2] = t2;
}
dfs(id, now + 1, k);
}