题解 牛客多校第八场 D Distance
题意:Distance
更新:插入一个点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)
查询: 给一个 ( x , y , z ) (x,y,z) (x,y,z) ,询问 m i n i ( ∣ x − x i ∣ + ∣ y − y i ∣ + ∣ z − z i ∣ ) min_i(|x-x_i|+|y-y_i|+|z-z_i|) mini(∣x−xi∣+∣y−yi∣+∣z−zi∣)
题解:
法1 三维BIT O(qlog^3(V))
时间复杂度 O ( q l o g 3 ( V ) ) O(qlog^3(V)) O(qlog3(V)) 其中V=nmh
先套路拆绝对值:
∣
x
−
x
i
∣
+
∣
y
−
y
i
∣
+
∣
z
−
z
i
∣
|x-x_i|+|y-y_i|+|z-z_i|
∣x−xi∣+∣y−yi∣+∣z−zi∣
共有
2
3
2^3
23种情况。
然后对其中某一种情况进行分析:
e.g.当
(
x
>
=
x
i
)
,
y
>
=
y
i
,
z
>
=
z
i
)
(x>=x_i),y>=y_i,z>=z_i)
(x>=xi),y>=yi,z>=zi)时,询问变为
m
i
n
{
(
x
−
x
i
)
+
(
y
−
y
i
)
+
(
z
−
z
i
)
}
min\{(x-x_i)+(y-y_i)+(z-z_i)\}
min{(x−xi)+(y−yi)+(z−zi)},重新合并得
x
+
y
+
z
−
(
x
i
+
y
i
+
z
i
)
x+y+z-(x_i+y_i+z_i)
x+y+z−(xi+yi+zi)
询问转化为求
m
a
x
(
x
i
+
y
i
+
z
i
)
,
w
h
e
r
e
(
x
i
<
=
x
)
,
y
i
<
=
y
,
z
i
<
=
z
)
max(x_i+y_i+z_i),\ where\ (x_i<=x),y_i<=y,z_i<=z)
max(xi+yi+zi), where (xi<=x),yi<=y,zi<=z).
于是我们可以用三维树状数组, O ( l o g 3 ( V ) ) O(log^3(V)) O(log3(V))地更新与查询三维前缀最大值
f.update(x, y, z, x + y + z);//插入
gmin(ans, x + y + z - f.query(x, y, z));//询问
//三维模板
struct BIT {
int a[maxn];
inline int lowbit(int x) { return x & -x; }
inline int gid(int x, int y, int z) {
return x * m * h + y * h + z;
}
void clear() {
for (int i = 0; i < maxn; i++) a[i] = -inf;
}
void update(int x, int y, int z, int val) {
for (int i = x; i <= n; i += lowbit(i)) {
for (int j = y; j <= m; j += lowbit(j)) {
for (int k = z; k <= h; k += lowbit(k)) {
gmax(a[gid(i, j, k)], val);
}
}
}
}
int query(int x, int y, int z) {
int r = -inf;
for (int i = x; i; i -= lowbit(i)) {
for (int j = y; j; j -= lowbit(j)) {
for (int k = z; k; k -= lowbit(k)) {
r = max(r, a[gid(i, j, k)]);
}
}
}
return r;
}
} f[8];
我们枚举8种情况即可
if (op == 1) {
f[0].update(x, y, z, x + y + z);
f[1].update(x, y, h - z + 1, x + y - z);
f[2].update(x, m - y + 1, z, x - y + z);
f[3].update(x, m - y + 1, h - z + 1, x - y - z);
f[4].update(n - x + 1, y, z, -x + y + z);
f[5].update(n - x + 1, y, h - z + 1, -x + y - z);
f[6].update(n - x + 1, m - y + 1, z, -x - y + z);
f[7].update(n - x + 1, m - y + 1, h - z + 1, -x - y - z);
} else if (op == 2) {
int ans = inf;
gmin(ans, x + y + z - f[0].query(x, y, z));
gmin(ans, x + y - z - f[1].query(x, y, h - z + 1));
gmin(ans, x - y + z - f[2].query(x, m - y + 1, z));
gmin(ans, x - y - z - f[3].query(x, m - y + 1, h - z + 1));
gmin(ans, -x + y + z - f[4].query(n - x + 1, y, z));
gmin(ans, -x + y - z - f[5].query(n - x + 1, y, h - z + 1));
gmin(ans, -x - y + z - f[6].query(n - x + 1, m - y + 1, z));
gmin(ans, -x - y - z - f[7].query(n - x + 1, m - y + 1, h - z + 1));
printf("%d\n", ans);
}
一种优化的写法是将符号存在3*8的数组里,for1…8来省去八行。
法2 定期重构O(Qsqrt(V))
O ( Q V ) O(Q\sqrt{V}) O(QV) 其中V=nmh
设Q=q+n,其中q为询问次数,n为加点操作的次数。
对于一段连续的询问,我们考虑用网格中bfs来求得最近的曼哈顿距离。将所有点放入BFS队列,标记出离它们最近的点,对于每一个询问O(1), 总的复杂度是O(V). 最坏会变成 O ( q V ) O(qV) O(qV)
当然最近的曼哈顿距离可以直接枚举n个点计算 ∣ x − x i ∣ + ∣ y − y i ∣ + ∣ z − z i ∣ |x-x_i|+|y-y_i|+|z-z_i| ∣x−xi∣+∣y−yi∣+∣z−zi∣,复杂度为 O ( q n ) O(qn) O(qn).
我们匀一匀,设定一个阈值 E E E ,当前的点数 c u r < E cur<E cur<E 个点就枚举, c u r = E cur=E cur=E 就BFS一次,然后将E个点存到另外的容器里,cur清零,等下一次 c u r = E cur=E cur=E 时与新点一起BFS。这样类似分块地做,复杂度为 O ( q E + V q / E ) O(qE+Vq/E) O(qE+Vq/E) E = V E=\sqrt{V} E=V 时取到最值 q ( 2 V ) q(2\sqrt{V}) q(2V)
code:
实现细节: 卡常了,首先可以调以下E的值,比如E*=3
然后push_back改emplace_back 因为BFS里面很多PB 实测-1/4时间
还有就是不用unordered_map,手写一个hash,hash很玄学
return (z - 1)*n*m + (x - 1)*n + y - 1;是错的
return (x - 1) * m * h + (y - 1) * h + z;才能A????
最后用dis数组存距离而不是mark数组染色。//这样必T,应该是map常数问题,未验证
#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<vector>
#include<algorithm>
#include<set>
#include<sstream>
#include<cstdio>
#include<cmath>
#include<climits>
#include<cstdlib>
#include<queue>
#include<unordered_map>
using namespace std;
#define rep(i,j,k) for(int i = (int)j;i <= (int)k;i ++)
#define debug(x) cerr<<#x<<":"<<x<<endl
#define pb push_back
#define FAST_IO ios::sync_with_stdio(0); cin.tie(0)
const int N = 1e6 + 5;
int n, m, h, q,E;
int Id(int x, int y, int z) {
//return (z - 1)*n*m + (x - 1)*n + y - 1;
return (x - 1) * m * h + (y - 1) * h + z;
}
struct P {
int x; int y; int z;
P(int x = 0, int y = 0, int z = 0) :x(x), y(y), z(z) {}
//bool operator <(const P & a)const { return x < a.x; }
};
vector<P> cur, pt;
//P mk[N];
int dis[N];
//unordered_map< int,int> mk;
int dir[6][3] = { 0,0,1 ,0,1,0, 0,0,-1, 0,-1,0 ,1,0,0, -1,0,0 };
void bfs() {
queue<P >Q;
int cnt = 0;
rep(i, 0, N)dis[i] = 1e9;
for (auto t : pt)Q.push(P(t.x, t.y, t.z)), dis[Id(t.x, t.y, t.z)] = 0;
while (!Q.empty()) {
auto v = Q.front();
int c = Id(v.x, v.y, v.z);
Q.pop();
rep(i, 0, 5) {
int dx = v.x + dir[i][0];
int dy = v.y + dir[i][1];
int dz = v.z + dir[i][2];
//if (mk.count(Id(dx,dy,dz )))continue;
if (dx<1 || dx>n || dy<1 || dy>m||dz<1||dz>h||dis[Id(dx,dy,dz)]!=1e9)continue;
Q.push( P(dx,dy,dz) ), dis[Id( dx, dy, dz )] =dis[c]+1;
}
}
}
int main() {
ios::sync_with_stdio(0); cin.tie(0);
int t;
cin >> n>>m>>h>>q;
rep(i, 0, N)dis[i] = 1e9;
E = 3*(int)sqrt(n*m*h);
rep(i, 1, q) {
int op, x, y, z;
cin >> op >> x >> y >> z;
if (op == 1) {
cur.push_back({ x,y,z });
if (cur.size() > E) {
pt.insert(pt.end(), cur.begin(), cur.end());
bfs();
cur.clear();
}
}
else {
int ans = dis[Id(x,y,z)];
for (auto t : cur) {
ans = min(ans, abs(t.x - x) + abs(t.y - y) + abs(t.z - z));
}
cout << ans << endl;
}
}
cin >> n;
}
/*
3 3 3 10
1 1 1 1
1 1 1 2
1 1 1 3
1 1 2 1
1 1 2 2
2 2 3 3
1 3 1 1
2 3 3 2
*/